首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Metastasis is the major cause for high mortality of lung cancer with the underlying mechanisms poorly understood. The scaffolding protein neural precursor cell expressed, developmentally down‐regulated 9 (NEDD9) has been identified as a pro‐metastasis gene in several types of cancers including melanoma and breast cancer. However, the exact role and related mechanism of NEDD9 in regulating lung cancer metastasis still remain largely unknown. Here, we demonstrate that NEDD9 knockdown significantly inhibits migration, invasion and metastasis of lung cancer cells in vitro and in vivo. The pro‐metastasis role of Nedd9 in lung cancer is further supported by studies in mice models of spontaneous cancer metastasis. Moreover, we find that NEDD9 promotes lung cancer cell migration and invasion through the induction of epithelial–mesenchymal transition (EMT) potentially via focal adhesion kinase activation. More importantly, NEDD9 expression inversely correlates with E‐cadherin expression in human lung cancer specimens, consistent with the findings from in vitro studies. Taken together, this study highlights that NEDD9 is an important mediator promotes lung cancer metastasis via EMT.  相似文献   

5.
6.
Bone‐related events caused by breast cancer bone metastasis substantially compromise the survival and quality of life of patients. Because triple‐negative breast cancer (TNBC) lacks hormone receptors and Her2‐targeted therapeutic options, progress in the treatment of TNBC bone metastasis has been very slow. Intercellular adhesion molecule 1 (ICAM1) is highly expressed in various cancers and plays an important role in tumorigenesis and metastasis. However, the effect and mechanism of ICAM1 in TNBC bone metastasis are still unknown. We found that ICAM1 was highly expressed in TNBC and correlated with prognosis in TNBC patients. Cell lines with high expression of ICAM1 exhibited enhanced bone metastasis in tumor‐bearing mice, and silencing ICAM1 expression significantly inhibited bone metastasis in mice. ICAM1 interacted with integrins to activate the epithelial‐to‐mesenchymal transition program through TGF‐β/SMAD signaling, ultimately enhancing cell invasiveness. Therefore, the findings of the present study provide a strong rationale for the application of ICAM1‐targeted therapy in TNBC patients with bone metastasis.  相似文献   

7.
8.
Kinesin family member C1 (KIFC1) is implicated in the clustering of multiple centrosomes to maintain tumor survival and is thought to be an oncogene in several kinds of cancers. In our experiments, we first performed bioinformatics analysis to investigate the expression levels of KIFC1 in bladder cancer (BC) specimens and normal bladder epitheliums and then, using our samples, verified findings by quantitative real‐time PCR and western blotting assays. All data showed that KIFC1 was significantly upregulated in BC specimens at both the mRNA and protein levels. Immunohistochemical studies in a cohort of 152 paraffin‐embedded BC tissues displayed that upregulated expression of KIFC1 clearly correlated with pT status (= .014) and recurrent status (= .002). Kaplan‐Meier survival analysis and log‐rank test indicated that patients with BC with high KIFC1 expression had both shorter cancer‐specific survival (< .001) and recurrence‐free survival time (< .001) than those with low KIFC1 expression. Furthermore, ectopic downregulation of KIFC1 weakened BC cell proliferation and migration both in vitro and in vivo, whereas upregulation of KIFC1 enhanced this in vitro. Overexpression of KIFC1 phosphorylated GSK3β and promoted Snail through activating AKT (protein kinase B0) to induce proliferation and epithelial–mesenchymal transition (EMT) and, therefore, substantially promoted BC migration and metastasis. Our study revealed an oncogenic role for KIFC1 to promote BC cell proliferation and EMT via Akt/GSK3β signaling; KIFC1 might be a promising prognostic biomarker as well as a therapeutic target for BC.  相似文献   

9.
Tumor‐associated macrophages (TAMs), one of the most common cell components in the tumor microenvironment, have been reported as key contributors to cancer‐related inflammation and enhanced metastatic progression of tumors. To explore the underlying mechanism of TAM‐induced tumor progression, TAMs were isolated from colorectal cancer patients, and the functional interaction with colorectal cancer cells was analyzed. Our study found that coculture of TAMs contributed to a glycolytic state in colorectal cancer, which promoted the stem‐like phenotypes and invasion of tumor cells. TAMs produced the cytokine transforming growth factor‐β to support hypoxia‐inducible factor 1α (HIF1α) expression, thereby upregulating Tribbles pseudokinase 3 (TRIB3) in tumor cells. Elevated expression of TRIB3 resulted in activation of the β‐catenin/Wnt signaling pathway, which eventually enhanced the stem‐like phenotypes and cell invasion in colorectal cancer. Our findings provided evidence that TAMs promoted colorectal cancer progression in a HIF1α/TRIB3‐dependent manner, and blockade of HIF1α signals efficiently improved the outcome of chemotherapy, describing an innovative approach for colorectal cancer treatment.  相似文献   

10.
Growth factors, such as the transforming growth factor beta (TGFβ), play an important role in promoting metastasis of prostate cancer, thus understanding how TGFβ could induce prostate cancer cell migration may enable us to develop targeted strategies for treatment of advanced metastatic prostate cancer. To more clearly define the mechanism(s) involved in prostate cancer cell migration, we undertook a series of studies utilizing non‐malignant prostate epithelial cells RWPE1 and prostate cancer DU145 and PC3 cells. Our studies show that increased cell migration was observed in prostate cancer cells, which was mediated through epithelial‐to‐mesenchymal transition (EMT). Importantly, addition of Mg2+, but not Ca2+, increased cell migration. Furthermore, TRPM7 expression, which functions as an Mg2+ influx channel, was also increased in prostate cancer cells. Inhibition of TRPM7 currents by 2‐APB, significantly blocked cell migration in both DU145 and PC3 cells. Addition of growth factor TGFβ showed a further increase in cell migration, which was again blocked by the addition of 2‐APB. Importantly, TGFβ addition also significantly increased TRPM7 expression and function, and silencing of TRPM7 negated TGFβ‐induced cell migration along with a decrease in EMT markers showing loss of cell adhesion. Furthermore, resveratrol, which decreases prostate cancer cell migration, inhibited TRPM7 expression and function including TGFβ‐induced cell migration and activation of TRPM7 function. Together, these results suggest that Mg2+ influx via TRPM7 promotes cell migration by inducing EMT in prostate cancer cells and resveratrol negatively modulates TRPM7 function thereby inhibiting prostate cancer metastasis.  相似文献   

11.
Extracellular ATP has been shown to play an important role in invasion and the epithelial‐mesenchymal transition (EMT) process in breast cancer; however, the mechanism is unclear. Here, by using a cDNA microarray, we demonstrated that extracellular ATP could stimulate hypoxia‐inducible factor (HIF) signaling and upregulate hypoxia‐inducible factor 1/2α (HIF‐1/2α) expression. After knocking down HIF‐1/2α using siRNA, we found that ATP‐driven invasion and EMT were significantly attenuated via HIF2A‐siRNA in breast cancer cells. By using ChIP assays, we revealed that the biological function of extracellular ATP in invasion and EMT process depended on HIF‐2α direct targets, among which lysyl oxidase‐like 2 (LOXL2) and matrix metalloproteinase‐9 (MMP‐9) mediated ATP‐driven invasion, and E‐cadherin and Snail mediated ATP‐driven EMT, respectively. In addition, using silver staining and mass spectrometry, we found that phosphoglycerate kinase 1 (PGK1) could interact with HIF‐2α and mediate ATP‐driven HIF‐2α upregulation. Furthermore, we demonstrated that expressions of HIF‐2α and its target proteins could be regulated via ATP by AKT‐PGK1 pathway. Using a Balb/c mice model, we illustrated the function of HIF‐2α in promoting tumor growth and metastasis in vivo. Moreover, by exploring online databases, we found that molecules involved in ATP‐HIF‐2α signaling were highly expressed in human breast carcinoma tissues and were associated with poor prognosis. Altogether, these findings suggest that extracellular ATP could promote breast carcinoma invasion and EMT via HIF‐2α signaling, which may be a potential target for future anti–metastasis therapy.  相似文献   

12.
Selective ERα modulator, tamoxifen, is well tolerated in a heavily pretreated castration‐resistant prostate cancer (PCa) patient cohort. However, its targeted gene network and whether expression of intratumor ERα due to androgen deprivation therapy (ADT) may play a role in PCa progression is unknown. In this study, we examined the inhibitory effect of tamoxifen on castration‐resistant PCa in vitro and in vivo. We found that tamoxifen is a potent compound that induced a high degree of apoptosis and significantly suppressed growth of xenograft tumors in mice, at a degree comparable to ISA‐2011B, an inhibitor of PIP5K1α that acts upstream of PI3K/AKT survival signaling pathway. Moreover, depletion of tumor‐associated macrophages using clodronate in combination with tamoxifen increased inhibitory effect of tamoxifen on aggressive prostate tumors. We showed that both tamoxifen and ISA‐2011B exert their on‐target effects on prostate cancer cells by targeting cyclin D1 and PIP5K1α/AKT network and the interlinked estrogen signaling. Combination treatment using tamoxifen together with ISA‐2011B resulted in tumor regression and had superior inhibitory effect compared with that of tamoxifen or ISA‐2011B alone. We have identified sets of genes that are specifically targeted by tamoxifen, ISA‐2011B or combination of both agents by RNA‐seq. We discovered that alterations in unique gene signatures, in particular estrogen‐related marker genes are associated with poor patient disease‐free survival. We further showed that ERα interacted with PIP5K1α through formation of protein complexes in the nucleus, suggesting a functional link. Our finding is the first to suggest a new therapeutic potential to inhibit or utilize the mechanisms related to ERα, PIP5K1α/AKT network, and MMP9/VEGF signaling axis, providing a strategy to treat castration‐resistant ER‐positive subtype of prostate cancer tumors with metastatic potential.

Abbreviations

CRPC
castration‐resistant prostate cancer
DHT
dihydrotestosterone
E2
estradiol
ERα
estrogen receptor alpha
GO
gene ontology
NG‐CHM
Next‐Generation Clustered Heatmaps
PCa
prostate cancer
TMAs
tissue microarrays
  相似文献   

13.
Low‐affinity immunoglobulin gamma Fc region receptor III‐A (FcγRIIIa) is a cell surface protein that belongs to a family of Fc receptors that facilitate the protective function of the immune system against pathogens. However, the role of FcγRIIIa in prostate cancer (PCa) progression remained unknown. In this study, we found that FcγRIIIa expression was present in PCa cells and its level was significantly higher in metastatic lesions than in primary tumors from the PCa cohort (P = 0.006). PCa patients with an elevated level of FcγRIIIa expression had poorer biochemical recurrence (BCR)‐free survival compared with those with lower FcγRIIIa expression, suggesting that FcγRIIIa is of clinical importance in PCa. We demonstrated that overexpression of FcγRIIIa increased the proliferative ability of PCa cell line C4‐2 cells, which was accompanied by the upregulation of androgen receptor (AR) and phosphatidylinositol‐4‐phosphate 5‐kinase alpha (PIP5Kα), which are the key players in controlling PCa progression. Conversely, targeted inhibition of FcγRIIIa via siRNA‐mediated knockdown or using its inhibitory antibody suppressed growth of xenograft PC‐3 and PC‐3M prostate tumors and reduced distant metastasis in xenograft mouse models. We further showed that elevated expression of AR enhanced FcγRIIIa expression, whereas inhibition of AR activity using enzalutamide led to a significant downregulation of FcγRIIIa protein expression. Similarly, inhibition of PIP5K1α decreased FcγRIIIa expression in PCa cells. FcγRIIIa physically interacted with PIP5K1α and AR via formation of protein–protein complexes, suggesting that FcγRIIIa is functionally associated with AR and PIP5K1α in PCa cells. Our study identified FcγRIIIa as an important factor in promoting PCa growth and invasion. Further, the elevated activation of FcγRIII and AR and PIP5K1α pathways may cooperatively promote PCa growth and invasion. Thus, FcγRIIIa may serve as a potential new target for improved treatment of metastatic and castration‐resistant PCa.  相似文献   

14.
Double cortin‐like kinase 1 (DCLK1) plays important roles during the epithelial‐mesenchymal transition (EMT) process in human colorectal cancer (CRC). However, the role of DCLK1 in regulating the EMT of CRC is still poorly understood. In this study, we report evidence that DCLK1 acts as a potent oncogene to drive its extremely malignant character of EMT in an NF‐κB‐dependent manner in CRC cells. Mechanistic investigations showed that DCLK1 induced the NF‐κBp65 subunit expression through the PI3K/Akt/Sp1 axis and activated NF‐κBp65 through the PI3K/Akt/IκBα pathway during the EMT of CRC cells. Moreover, we found that silencing the expression of DCLK1 inhibited the invasion and metastasis of CRC cells in vivo. Collectively, our findings identify DCLK1 as a pivotal regulator of an EMT axis in CRC, thus implicating DCLK1 as a potential therapeutic target for CRC metastasis.  相似文献   

15.
16.
17.
Transforming growth factor β (TGFβ) causes the acquisition of epithelial–mesenchymal transition (EMT). Although the tumor suppressor gene PTEN (phosphatase and tensin homologue deleted from chromosome 10) can negatively regulate many signaling pathways activated by TGFβ, hyperactivation of these signaling pathways is observed in lung cancer cells. We recently showed that PTEN might be subject to TGFβ‐induced phosphorylation of its C‐terminus, resulting in a loss of its enzyme activities; PTEN with an unphosphorylated C‐terminus (PTEN4A), but not PTEN wild, inhibits TGFβ‐induced EMT. Nevertheless, whether or not the blockade of TGFβ‐induced EMT by the PTEN phosphatase activity might be attributed to the unphosphorylated PTEN C‐terminus itself has not been fully determined. Furthermore, the lipid phosphatase activity of PTEN is well characterized, whereas the protein phosphatase activity has not been determined. By using lung cancer cells carrying PTEN domain deletions or point mutants, we investigated the role of PTEN protein phosphatase activities on TGFβ‐induced EMT in lung cancer cells. The unphosphorylated PTEN C‐terminus might not directly retain the phosphatase activities and repress TGFβ‐induced EMT; the modification that keeps the PTEN C‐terminus not phosphorylated might enable PTEN to retain the phosphatase activity. PTEN4A with G129E mutation, which lacks lipid phosphatase activity but retains protein phosphatase activity, repressed TGFβ‐induced EMT. Furthermore, the protein phosphatase activity of PTEN4A depended on an essential association between the C2 and phosphatase domains. These data suggest that the protein phosphatase activity of PTEN with an unphosphorylated C‐terminus might be a therapeutic target to negatively regulate TGFβ‐induced EMT in lung cancer cells.  相似文献   

18.
Vγ9Vδ2 T cells are attractive effector cells for immunotherapy with potent cytotoxic activity against a variety of malignant cells. However, the effect of Vγ9Vδ2 T cells on chemotherapy‐resistant acute myeloid leukemia (AML) blasts, especially highly refractory leukemia stem cells (LSCs) is still unknown. In this study, we investigated the effect of cytotoxicity of allogeneic Vγ9Vδ2 T cells on chemotherapy‐resistant AML cell lines, as well as on primary AML blasts and LSCs obtained from refractory AML patients. The results indicated that Vγ9Vδ2 T cells can efficiently kill drug‐resistant AML cell lines in vitro and in vivo, and the sensitivity of AML cells to Vγ9Vδ2 T cell–mediated cytotoxicity is not influenced by the sensitivity of AML cells to chemotherapy. We further found that Vγ9Vδ2 T cells exhibited a comparable effect of cytotoxicity against LSCs to primary AML blasts. More importantly, we revealed that the CD226–extracellular signal–regulatory kinase1/2 (ERK1/2)–lysosome‐associated membrane protein 1 (LAMP1) pathway is an important mechanism for Vγ9Vδ2 T cell–induced cytotoxicity against AML cells. First, Vγ9Vδ2 T cells recognized AML cells by receptor‐ligand interaction of CD226–Nectin‐2, which then induced ERK1/2 phosphorylation in Vγ9Vδ2 T cells. Finally, triggering the movement of lytic granules toward AML cells induced cytolysis of AML cells. The expression level of Nectin‐2 may be used as a novel marker to predict the susceptibility/resistance of AML cells to Vγ9Vδ2 T cell treatment.  相似文献   

19.
Epithelial–mesenchymal transition (EMT) is an important mechanism of cancer invasion and metastasis. Although p53 binding protein 1 (53BP1) has been implicated in several biological processes, its function in EMT of human cancers has not yet been reported. Here, we show that 53BP1 negatively regulated EMT by modulating ZEB1 through targeting microRNA (miR)‐200b and miR‐429. Furthermore, 53BP1 promoted ZEB1‐mediated upregulation of E‐cadherin and also inhibited the expressions of mesenchymal markers, leading to increased migration and invasion in MDA‐MB‐231 breast cancer cells. Consistently, in MCF‐7 breast cancer cells, low 53BP1 expression reduced E‐cadherin expression, resulting in increased migration and invasion. These effects were reversed by miR‐200b and miR‐429 inhibition or overexpression. Sections of tumor xenograft model showed increased ZEB1 expression and decreased E‐cadherin expression with the downregulation of 53BP1. In 18 clinical tissue samples, expression of 53BP1 was positively correlated with miR‐200b and mir‐429 and negatively correlated with ZEB1. It was also found that 53BP1 was associated with lymph node metastasis. Taken together, these results suggest that 53BP1 functioned as a tumor suppressor gene by its novel negative control of EMT through regulating the expression of miR‐200b/429 and their target gene ZEB1.  相似文献   

20.
Patients with non-small cell lung cancer (NSCLC) treated with EGFR-tyrosine kinase inhibitors (TKIs) ultimately develop drug resistance and metastasis. Therefore, there is a need to identify the underlying mechanisms of resistance to EGFR-TKIs. In the present study, colony formation and MTT assays were performed to investigate cell viability following treatment with icotinib. Gene Expression Omnibus datasets were used to identify genes associated with resistance. Wound healing and Transwell assays were used to detect cell migration and invasion with icotinib treatment and integrin α5-knockdown. The expression levels of integrin α5 and downstream genes were detected using western blotting. Stable icotinib-resistant (IcoR) cell lines (827/IcoR and PC9/IcoR) were established that showed enhanced malignant properties compared with parental cells (HCC827 and PC9). Furthermore, the resistant cell lines were resistant to icotinib in terms of proliferation, migration and invasion. The enrichment of function and signaling pathways analysis showed that integrin α5-upregulation was associated with the development of icotinib resistance. The knockdown of integrin α5 attenuated the migration and invasion capability of the resistant cells. Moreover, a combination of icotinib and integrin α5 siRNA significantly inhibited migration and partly restored icotinib sensitivity in IcoR cells. The expression levels of phosphorylated (p)-focal adhesion kinase (FAK), p-STAT3 and p-AKT decreased after knockdown of integrin α5, suggesting that FAK/STAT3/AKT signaling had a notable effect on the resistant cells. The present study revealed that the integrin α5/FAK/STAT3/AKT signaling pathway promoted icotinib resistance and malignancy in IcoR NSCLC cells. This signaling pathway may provide promising targets against acquired resistance to EGFR-TKI in patients with NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号