首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A series of Ce-Fe-Zr-O(x)/MgO (x denotes the mass fraction of Ce-Fe-Zr-O, x=10%, 15%, 20%, 25%, 30%) complex oxide oxygen carriers for selective oxidation of methane to synthesis gas were prepared by the co-precipitation method. The catalysts were characterized by means of X-ray diffraction (XRD) and H2-TPR. The XRD measurements showed that MgFeO4 particles were formed and Fe2O3 particles well dispersed on the oxygen carriers. The reactions between methane diluted by argon (10% CH4) and oxygen carriers were investigated. Suitable content of CeO2/Fe2O3/ZrO2 mixed oxides could promote the reaction between methane and oxygen carriers. There are mainly two kinds of oxygen of carriers: surface lattice oxygen which had higher activity but lower selectivity, and bulk lattice oxygen which had lower activity but higher selectivity. Among all the catalysts, Ce-Fe-Zr-O(20%)/MgO exhibited the best catalytic performance. The conversion of the methane was above 56%, and the selectivity of the H2 and CO were both above 93%, the ratio of H2/CO was stable and approached to 2 for a long time.  相似文献   

2.
The cerium iron complex oxides oxygen carrier was prepared by the co-precipitation method. The reactions between methane and lattice oxygen from the complex oxides were investigated in a fixed micro-reactor system. The reduced oxygen carder could be re-oxidized by air and its initial state could be restored. The characterizations of the oxygen carders were studied using XRD, O2-TPD, and H2-TPR. The results showed that the bulk lattice oxygen of CeO2-Fe2O3 was found to be suitable for the partial oxidation of methane to synthesis gas. There were two kinds of oxygen species on the oxygen carrier: the stronger oxygen species that was responsible for the complete oxidation of methane, and the weaker oxygen species (bulk lattice oxygen) that was responsible for the selective oxidation of methane to CO and H2 at a higher temperature. Then, the lost bulk lattice oxygen could be selectively supplemented by air re-oxidation at an appropriate reaction condition. CeFeO3 appeared on the oxygen carrier after 10 successive redox cycles, however, it was not bad for the selectivity of CO and H2.  相似文献   

3.
A citric acid complex method was employed to prepare Ce/Ni mixed oxides with various Ce/Ni ratios useful for selective oxidation methane to syngas in the absence of gaseous oxygen,and the catalytic activity measurement was investigated in a fixed bed reactor at 800 oC.The prepared oxygen carriers were characterized by various characterization techniques such as TG-DSC,XRD and TPR.The results of TG-DSC indicated that the Ce1-xNixO2 precursor generated a stable phase after the heat-treatment at temperatures above 800 oC.The XRD characterization suggested that some Ce-Ni solid solution was formed when Ni2+ ions was incorporated into the lattice of CeO2,and it led to the generation of O-vacancy which could improve the oxygen mobility in the lattice of oxygen carriers.It was found that Ce0.8Ni0.2O2 gave the highest activity in the selective oxidation methane to syngas reaction,and the average methane conversion,CO and H2 selectivity reached to 82.31%,82.41% and 87.64%,respectively.The reason could be not only attributed to the fitting amount of NiO dispersed on the CeO2 surface and bulk but also to actual lattice oxygen amount increased in oxygen carrier.  相似文献   

4.
A series of Ce1-xFexO2 (x=0, 0.2, 0.4, 0.6, 0.8, 1) complex oxide catalysts were prepared using the coprecipitation method. The catalysts were characterized by means of XRD and H2-TPR. The reactions between methane and lattice oxygen from the complex oxides were investigated. The characteristic results revealed that the combination of Ce and Fe oxide in the catalysts could lower the temperature necessary to reduce the cerium oxide. The catalytic activity for selective CH4 oxidation was strongly influenced by dropped Fe species. Adding the appropriate amount of Fe2O3 to CeO2 could promote the action between CH4 and CeO2. Dispersed Fe2O3 first returned to the original state and would then virtually form the Fe species on the catalyst, which could be considered as the active site for selective CH4 oxidation. The appearance of carbon formation was significant and the oxidation of carbon appeared to be the rate-determining step; the amounts of surface reducible oxygen species in CeO2 were also relevant to the activity. Among all the catalysts, Ce0.6Fe0.402 exhibited the best activity, which converted 94.52% of CH4 at 900 ℃.  相似文献   

5.
We investigated the effect of calcination temperature, reaction temperature, and different amounts of replenished lattice oxygen on the partial oxidation of methane (POM) to synthesis gas using perovskite-type LaFeO3 oxide as oxygen donor instead of gaseous oxygen, which was prepared by the sol-gel method, and the oxides were characterized by XRD, TG/DTA, and BET. The results indicated that the particle size increased with the calcination temperature increasing, while BET and CH4 conversion declined with the calcination temperature increasing using LaFeO3 oxide as oxygen donor in the absence of gaseous oxygen. CO selectivity remained at a high level such as above 92%, and increased slightly as the calcination temperature increased. Exposure of LaFeO3 oxides to methane atmosphere enhanced the oxygen migration of in the bulk with time online owing to the loss of lattice oxygen and reduction of the oxidative stated Fe ion simultaneously, The high reaction temperature was favorable to the migration of oxygen species from the bulk toward the surface for the synthesis gas production with high CO selectivity. The product distribution and evolution for POM by sequential redox reaction was determined by amounts of replenished lattice oxygen with gaseous oxygen. The optimal process should decline the total oxidation of methane, and increase the selectivity of partial oxidation of methane.  相似文献   

6.
介绍了一种在熔融盐中利用金属氧化物的晶格氧部分氧化甲烷制合成气的新方法。以NiO为氧载体对其部分氧化甲烷的氧扩散行为进行了初步研究。利用XRD和GC等分析手段,在自行设计的氧扩散行为研究反应器中对熔融盐体系和产物气进行了分析研究。结果表明,在800℃的碳酸熔融盐中,CH4通过不含NiO氧载体的熔融盐层时H2、CO浓度仅为13.67%和20%,而通过含NiO氧载体的熔融盐层时H2、CO浓度明显增至45.9%和24.5%;实验表明NiO能够提供出自身晶格氧把CH4部分氧化成n(H2)/n(CO)接近理论值2的合成气;NiO在熔融碳酸盐体系中虽有少量溶解,但主要不以离子化形式扩散氧,而是CH4与NiO分子间发生气固反应占主导,在这一过程中NiO分子中晶格氧是甲烷部分氧化的活性氧物种。  相似文献   

7.
A novel process for synthesis gas production over Circulating Fluidized Bed (CFB) using oxygen storage materials as oxygen carder was reported. First, oxygen in the air was chemically fixed and converted to lattice oxygen of oxygen storage materials over regenerator, and then methane was selectively oxidized to synthesis gas with lattice oxygen of oxygen storage materials over riser reactor. The results from simulation reaction of CFB by sequential redox reaction on a fixed bed reactor using lanthanum-based perovskite LaFeO3 and La0.8Sr0.2Fe0.9CO0.1O3 oxides prepared by sol-gel, suggested that the depleted oxygen species could be regenerated, and methane could be oxidized to synthesis gas by lattice oxygen with high selectivity. The partial oxidation of methane to synthesis gas over CFB using lattice oxygen of the oxygen storage materials instead of gaseous oxygen should be possibly applicable.  相似文献   

8.
Chemical interaction of Ce-Fe mixed oxides was investigated in methane selective oxidation via methane temperature programmed reduction and methane isothermal reaction tests over Ce-Fe oxygen carriers. In methane temperature programmed reduction test, Ce-Fe oxide behaved complete oxidation at the lower temperature and selective oxidation at higher temperatures. Ce-Fe mixed oxides with the Fe content in the range of 0.1–0.5 was able to produce syngas with high selectivity in high-temperature range(800–900 °C), and a higher Fe amount over 0.5 seemed to depress the CO formation. In isothermal reaction, complete oxidation occurred at beginning following with selective oxidation later. Ce1–xFexO2–δ oxygen carriers(x≤0.5) were proved to be suitable for the selective oxidation of methane. Ce-Fe mixed oxides had the well-pleasing reducibility with high oxygen releasing rate and CO selectivity due to the interaction between Ce and Fe species. Strong chemical interaction of Ce-Fe mixed oxides originated from both Fe*activated CeO2 and Ce3+ activated iron oxides(FeOm), and those chemical interaction greatly enhanced the oxygen mobility and selectivity.  相似文献   

9.
利用综合热分析仪研究了O2/N2与O2/CO2气氛下Fe2O3与K2CO3对无烟煤催化燃烧反应性的影响。结果表明,在O2/CO2气氛下,Fe2O3与K2CO3均可以催化无烟煤粉的燃烧,但其催化作用要弱于O2/N2气氛,且在低氧气浓度的O2/CO2气氛下对Fe2O3与K2CO3的抑制作用大于高氧气浓度。氧气浓度为20%~80%时,K2CO3在O2/N2气氛下催化煤粉前期燃烧使燃烧由反应控制转变为扩散控制,Fe2O3则只在氧气浓度为20%时能改变煤粉前期燃烧的控制步骤;而Fe2O3与K2CO3在O2/CO2气氛下均只能在氧气浓度为20%时改变煤粉前期燃烧的控制步骤,由反应控制转变为扩散控制。  相似文献   

10.
A citric acid complex method was employed to prepare Ce/Ni mixed oxides with various Ce/Ni ratios useful for selective oxidation methane to syngas in the absence of gaseous oxygen, and the catalytic activity measurement was investigated in a fixed bed reactor at 800 °C. The prepared oxygen carriers were characterized by various characterization techniques such as TG-DSC, XRD and TPR. The results of TG-DSC indicated that the Ce1-xNixO2 precursor generated a stable phase after the heat-treatment at temperatures above 800 °C. The XRD characterization suggested that some Ce-Ni solid solution was formed when Ni2+ ions was incorporated into the lattice of CeO2, and it led to the generation of O-vacancy which could improve the oxygen mobility in the lattice of oxygen carriers. It was found that Ce0.8Ni0.2O2 gave the highest activity in the selective oxidation methane to syngas reaction, and the average methane conversion, CO and H2 selectivity reached to 82.31%, 82.41% and 87.64%, respectively. The reason could be not only attributed to the fitting amount of NiO dispersed on the CeO2 surface and bulk but also to actual lattice oxygen amount increased in oxygen carrier.  相似文献   

11.
实验通过定组成的H2/CO2混合气控制氧分压,在温度为1873 K、1673 K、1473 K,氧分压为1.22×10-8~2.18×10-12 Pa、4.92×10-8~8.79×10-12 Pa的范围内,研究了TiOx-SiO2-MgO 系的析出相.结合XRD和EDS分析并对比汪大亚等人的研究可知,当氧分压较高(PCO∶PCO2=5∶1)时,对于初始成分TiO2∶MgO∶SiO2摩尔比为60∶25∶15的试样,在1873 K 和1673 K 时的析出相为TiO2,在1473 K 时其析出相为MgTi2O5;对于初始成分TiO2∶MgO∶SiO2摩尔比为60∶15∶25的试样,在1873 K时其析出相为TiO2,在1673 K和1473 K时析出相为MgTi2O5.而当氧分压较低(PH2∶PCO2=600∶1、300∶1、150∶1)时,2种不同成分的试样在不同温度下的析出相均为黑钛石,并且随着氧分压的降低,黑钛石中的Mg 含量逐渐减少.  相似文献   

12.
采用3种不同的方法合成新型的以Fe2O3颗粒为载体的Ce-Fe复合氧化物催化剂,探究不同制备方式的复合氧化物催化剂的催化CO还原NO性能,并通过X射线衍射(XRD)、拉曼光谱(Raman)、氢气-程序升温还原(H2-TPR)、X射线光电子能谱(XPS)表征来对催化剂进行探究。结果证明Ce-Fe复合氧化物具有较高的催化活性,硝酸水热法Ce-Fe复合氧化物在900℃时脱硝率可达到99%以上。XRD中显示硝酸水热样品中CeO2峰向高角度偏移,并且晶格常数变小。Raman结果说明硝酸水热样品CeO2的振动峰向左大幅度偏移,结合XRD说明硝酸水热法可以形成Ce-O-Fe固溶体。H2-TPR说明氧化还原性:硝酸水热法>硝酸浸渍法>普通浸渍法。XPS结果说明硝酸水热法形成的Ce-O-Fe固溶体可以促进Fe3+向Fe2+、晶格氧向吸附氧的转换,这体现出复合催化剂Ce、Fe之间的联合作用。在整个反应过程中Fe2O3作为载体可以提供大量晶格氧,Ce-O-Fe固溶体的存在决定了复合催化剂的高催化活性。  相似文献   

13.
A series of Ce0.5Fe0.30Zr0.20O2 catalysts were prepared by different methods(co-precipitations method, citric acid sol-gel method, impregnation method, physical mixed method, and hydrothermal method) and characterized by X-ray diffraction(XRD), Raman spectroscopy, Brunauer-Emmett-Teller(BET) and H2-TPR measurements. Potential of the catalysts in the soot oxidation was evaluated in a temperature-programmed oxidation(TPO) apparatus. The results showed that all the Fe3+ and Zr4+ were incorporated into ceria lattice to form a pure Ce-Fe-Zr-O solid solution for the co-precipitation sample, but two kinds of Fe phases existed in the Ce-Fe-Zr-O catalysts prepared by other methods: Fe3+ incorporated into CeO2 lattice and dispersed Fe2O3 clusters. The free Fe2O3 clusters could improve the activity of catalysts for soot oxidation comparing with the pure Ce-Fe-Zr-O solid solution owing to the synergetic effect between free Fe2O3 and surface oxygen vacancies. In addition, the activity of catalysts strongly relied on the surface reducibility of free Fe2O3 particles. Holding both abundant free Fe2O3 particles and high oxygen vacancy concentration, the hydrothermal Ce0.5Fe0.3Zr0.2O2 catalyst presented the lowest Ti(251 °C, ignition temperature of soot oxidation) and Tm(310 °C, maximum oxidation rate temperature) for soot combustion(with tight-contact between soot and catalysts) among the five samples. Even after aging at 800 °C for 10 h, the Ti and Tm were still relatively low, at 273 and 361 °C, respectively, indicating high catalytic stability.  相似文献   

14.
The CuxO-Ce O2/Fe@CNSs, CuxO-Ce O2/MWCNTs-Co and CuxO-Ce O2/MWCNTs-Ni catalysts were prepared by the impregnation method and characterized by transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction, H2-temperature programmed reduction and N2 adsorption-desorption techniques. It was found that the Fe nanoparticles were encapsulated into the multi-layered carbon nanospheres(CNSs). However, the multi-wall carbon nanotubes(MWCNTS) were generated on the Co/Al2O3 and Ni/Al2O3 precursor. The addition of carbon nanomaterial as supports could improve structural properties and low-temperature activity of the Cu O-Ce O2 catalyst, and save the used amount of metal catalysts in the temperature range with high selectivity for CO oxidation. The copper-cerium oxides supported on carbon nanomaterial had good resistence to H2 O and CO2.  相似文献   

15.
赵斌  吴巍  吴伟  汪成义  崔怀周 《钢铁》2019,54(11):33-39
 为了获得最佳的供氧和粉剂消耗与温度的关系。国内某钢厂采用专用炉顶吹氧+喷粉搅拌脱磷工艺为AOD炉提供优质的低磷铁水冶炼不锈钢,实现了新型一步法冶炼不锈钢工艺。生产实践表明,随着喷吹钝化石灰粉和铁皮球用量的增加,脱磷率逐渐升高,当石灰喷吹量为10~12 kg/t、铁皮球消耗量为25.0~37.5 kg/t、供氧量为300~400 m3时,脱磷率在85%以上;脱磷率随着钙氧比的增大而减小,当w(CaO)/w(Fe2O3)为0.8时达到最大值,钙氧比为0.8~1.4时脱磷率大部分在85%以上,钙氧比超过1.4时效果降低。  相似文献   

16.
The effects of Ce-ZrOx, Ce-LaOx, Ce-SmOx and Ce-GdOx additions to Rh/Al2O3 catalysts on methane autothermal re-forming were investigated. Activity tests showed that the addition of Ce-ZrOx could significantly reduce the concentration of CO in reformats. When Ce/Zr atomic ratio was 1:1, C%.5Zr0.5O2 solid solution with high thermal stability was obtained, which could effec- tively improve the catalytic performance effectively. The additives of alkaline-earth metals (Mg, K and Ca) on the catalytic properties were also studied. The results of experiments showed that the addition of MgO to Rh/Ce0.5Zr0.5O2/Al2O3 improved the stable per- formance and the carbon resistance of the catalyst. The optimized catalyst was 0.1%Rh/2.0%MgO/40%Ce0.5Zr0.5O2/Al2O3, which showed a highly stable performance for methane autothermal reforming.  相似文献   

17.
The effect of Co doping on ceria-zirconia mixed oxides was investigated for Co 0.1 Ce 0.6 Zr 0.3 O x sample prepared by sol-gel method. The Pd-only three-way catalyst (TWC) was obtained by incipient wetness impregnation with 0.5 wt.% Pd loading. The structural and oxygen handling properties were analyzed by X-ray diffraction (XRD), H 2 -temperature programmed reduction (H 2 -TPR) and the dynamic oxygen storage capacity (DOSC). The introduction of Co into ceria-zirconia lattice strongly modified the mobility of oxygen and enhanced the DOSC performance. Pd-only TWC based on the Co 0.1 Ce 0.6 Zr 0.3 O x support exhibited superior activity for water-gas shift and steam reforming and amplified amplitude of stoichiometric window.  相似文献   

18.
Chemical chain combustion technology is a new combustion technology that achieves efficient and low energy separation for CO2 capture. CaSO4- Fe2O3 oxygen carrier was prepared by sol- gel method from blast furnace slag containing iron, and X- ray diffraction (XRD) and scanning electron microscopy and energy dispersive X- ray (SEM- EDX) were used to characterize the oxygen carrier particles. The results show that the CaSO4- Fe2O3 oxygen carrier prepared from iron metallurgical dust has a mass fraction of 93. 58%, a specific surface area of 10. 37cm2/g and a conversion rate of 67. 47% after reaction?? with coal powder, which has good reactivity. Combined with SEM and EDS analysis, the main cause of the decrease of carrier activity is the accumulation of coal ash during the cycle combustion process, resulting in complex and diversified carrier components, chemical reactions and agglomeration effects, and then carrier activity is reduced.  相似文献   

19.
陈天明 《钢铁》2011,46(4):26-30
 利用热力学软件计算了齿轮钢氧含量与夹杂物成分的关系、夹杂物转变条件。结果表明,超低氧20 CrMoH钢中具有较高塑性的非金属夹杂物成分为:SiO2 0%~10%、Al2O3 22%~55%、CaO 42%~60%、MgO 5%~10%,与之平衡的时钢液中铝含量在0.020%左右,钙含量>0.7×10-6,氧含量在0.0005%左右;选择组成为CaO>40%、Al2O3≤37%、MgO10%、(%CaO+%MgO)/%SiO2为10、SiO2含量尽量低的渣系,钢中Al2O3、MgO•Al2O3夹杂物可转变为低熔点的钙铝酸盐。上述结果在工业试验中得到了验证。  相似文献   

20.
A series of monolithic Ni/γ-Al2O3 catalysts with and without basic promoters (Na, Sr, La, Ce) were prepared. Partial oxidation of methane (POM) to syngas was carried out in a continuous-flow, fixed-bed reactor. The influences of reaction conditions, including temperature, CH4/O2 ratio and space velocity, on the performance of the catalyst were investigated. The results show that at a high space velocity of 1×105 h-1, optimal CH4 conversion can be obtained. Effects of promoters such as Na, Sr, Ce, La were also investigated, and the catalyst samples were characterized by means of temperature-programmed reduction and XRD techniques. XRD suggests that the addition of promoters has no influence on the crystal structure of Ni/γ-Al2O3 catalyst. The results show that the addition of a small amount of promoters improves the reducibility and activity of the catalyst. The side reaction CH4 2 O2→CO2 H2O, is fully restrained and 100% H2 selectivity is achieved when Ce and La are used as promoters, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号