共查询到18条相似文献,搜索用时 62 毫秒
1.
多输出非线性系统神经网络变结构控制的算法及其实现 总被引:6,自引:0,他引:6
在变结构控制系统中,切换函数的实际值与理想值之差反映了模型与实际系统的差别,引入神经网络的目的是在线辨识出这种差别。方法实现了对输入多输出非线性系统轨迹踊跃的控制,且对摄动具有很强的鲁棒性,大大减小了系统在切换面上的抖动。 相似文献
2.
给出了类似于单变量系统的多输入非线性系统的规范型,以及系统可化为这种形式的充分必要条件。针对化为规范型的非线性系统,讨论了对其实施变结构控制问题。 相似文献
3.
4.
具有不确定性的非线性系统的变结构控制 总被引:2,自引:0,他引:2
本文研究了具有不确定性非线性系统的鲁棒输出跟踪控制问题,考虑了对参数、建模不确定性及干扰的鲁棒性。这里的不确定性不需满足通常的匹配条件。通过构造一个Lyapunov函数,我们得到一个变结构控制器,并且证明了输出跟踪误差的收敛性。最后,给出了计算机仿真,结果表明本文提出的方法是有效的。 相似文献
5.
非线性广义系统的变结构控制设计 总被引:1,自引:1,他引:1
从线性定常广义系统出发,研究非线性广义系统的变结构控制设计问题。其主要思想为:选取一具有指定性能的线性定常广义系统作为参考模型,根据所控系统与参考模型的误差方程设计变结构控制,使系统的状态(输出)向参考模型的状态(输出)逼近,由参考模型的性能即得所研究的非线性广义系统所希望的性能。仿真例子验证了所建立方法的有效性。 相似文献
6.
7.
8.
本文研究了一般非线性系统的变结构控制.将系统变换为正则型,并引入趋近律这一新概念,保证动态过程品质,减弱抖振.对控制作用受限情况及系统受到摄动时的鲁棒性也进行了研究.仿真支持本文结果的有效性. 相似文献
9.
利用几何方法,从广义非线性系统本身出发,研究了广义非线性控制的变化结构控制理论,给出了系统存在变结构控制的充分实际没动模式的近似定理。从所得结论可知,滑动条件仅能保证实际滑动模的慢变状态赵近于理想滑动模的慢变状态,而不能保证实际滑动模的状态趋近于理想滑动模的快变状态,研究正常非线性系统的方法已不能简单地被利用到广义非线性系统。 相似文献
10.
本文采用伪线性化变换将船舶操纵非线性系统近似地化为线性可控正则型,并对线性化系统设计了一种连续的变结构以提高整个闭环系统的鲁棒性。该方案用于限制水域中船舶的航向航迹纠编控制中,取得了预期的结果。 相似文献
11.
12.
13.
14.
An effective way to extend to the multi-input case the variable structure control philosophy is the method based on a set of m+1 control vectors forming a simplex in ℛm, and on the corresponding switching of the controlled system from one to another of m+1 different structures. In this paper, the basic method is briefly recalled and conditions for the possible extension of its validity to the case of uncertain nonlinear systems affine in the control law are sought. The possibility of guaranteeing the convergence of the simplex method also in the case of nonlinear systems non-affine in the control law is investigated. © 1997 by John Wiley & Sons, Ltd. 相似文献
15.
O. M. Mohamed Vall R. M'hiri 《国际自动化与计算杂志》2008,5(3):313-318
Many physical processes have nonlinear behavior which can be well represented by a polynomial NARX or NARMAX model. The identification of such models has been widely explored in literature. The majority of these approaches are for the open-loop identification. However, for reasons such as safety and production restrictions, open-loop identification cannot always be done. In such cases, closed-loop identification is necessary. This paper presents a two-step approach to closed-loop identification of the polynomial NARX/NARMAX systems with variable structure control (VSC). First, a genetic algorithm (GA) is used to maximize the similarity of VSC signal to white noise by tuning the switching function parameters. Second, the system is simulated again and its parameters are estimated by an algorithm of the least square (LS) family. Finally, simulation examples are given to show the validity of the proposed approach. 相似文献
16.
In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The unknown time-varying delay uncer- tainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear function outside the deadband without necessarily constructing a dead-zone inverse as an added contribution. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. In addition, a modified adaptive control algorithm is given in order to avoid the high-frequency chattering phenomenon. Simulation results demonstrate the effectiveness of the approach. 相似文献
17.
The tracking control of linear MIMO systems with structured uncertainty is considered. A necessary and sufficient condition for robust asymptotic tracking employing variable structure techniques in the presence of multiplicative uncertainty is derived. The constructive proof of the theorem provides an explicit formula for controller synthesis. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献