首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first part of the series of this article proposed a systematic method for the synthesis of continuous water-using system involving both non-mass-transfer-based and mass-transfer-based operations.This article,by ex- tending the method,proposes a time-dependent concentration interval analysis(CIA)method to solve the problems associated with the synthesis of discontinuous or batch water-using systems involving both non-mass-transfer-based and mass-transfer-based operation.This method can effectively identify the possibility of water reuse and the amount of water reused under time constraints for minimizing the consumption of freshwater in single or repeated batch/discontinuous water-using systems.Moreover,on the basis of the heuristic method adapted from concentra- tion interval analysis method for the continuous process network design,the network design for the discontinuous or batch process can be obtained through the designs for every time interval.Case study illustrates that the method presented in this article can simultaneously minimize the freshwater consumption in single or repeated batch/discontinuous water system and can determine a preferable storage tank capacity for some problems.  相似文献   

2.
通过数学规划方法设计具有混合结构的水回用网络   总被引:1,自引:0,他引:1       下载免费PDF全文
A new design method for a water-reusing network, with a hybrid structure, to reduce the complexity of the network and to minimize freshwater consumption, is proposed. The unique feature of the methodology proposed .in this article is to control the complexity of the water network by regulation of the control number in a water-reusing system. It combines the advantages of a conventional water-reusing network and a water-reusing net work with internal water mains. To illustrate the proposed method, a single contaminant system and a multiple contaminant system serve as examples of the problems.  相似文献   

3.
A strategy for water and wastewater minimization is developed for continuous water utilization systems involving fixed flowrate(non-mass-transfer-based)operations,based on the fictitious operations that is introduced to represent the water losing and/or generating operations and a modified concentration interval analysis(MCIA) technique.This strategy is a simple,nongraphical,and noniterative procedure and is suitable for the quick yields of targets and the identification of pinch point location.Moreover,on the basis of the target method,a heuristic-based approach is also presented to generate water utilization networks,which could be demonstrated to be optimum ones. The proposed approaches are illustrated with example problems.  相似文献   

4.
A strategy for water and wastewater minimization is developed for continuous water utilization systems involving fixed flowrate(non-mass-transfer-based)operations,based on the fictitious operations that is introduced to represent the water losing and/or generating operations and a modified concentration interval analysis(MCIA) technique.This strategy is a simple,nongraphical,and noniterative procedure and is suitable for the quick yields of targets and the identification of pinch point location.Moreover,on the basis of the target method,a heuristic-based approach is also presented to generate water utilization networks,which could be demonstrated to be optimum ones. The proposed approaches are illustrated with example problems.  相似文献   

5.
This article deals with the design of energy efficient water utilization systems allowing operation split. Practical features such as operating flexibility and capital cost have made the number of sub operations an important parameter of the problem. By treating the direct and indirect heat transfers separately, target freshwater and energy consumption as well as the operation split conditions are first obtained. Subsequently, a mixed integer non-linear programming (MINLP) model is established for the design of water network and the heat exchanger network (HEN). The proposed systematic approach is limited to a single contaminant. Example from literature is used to illustrate the applicability of the approach.  相似文献   

6.
过程工业中具有能量集成的用水网络优化设计   总被引:5,自引:0,他引:5  
Effective utilization of water and energy is the key factor of sustainable development in process industries, and also an important science and technology problem to be solved in systems engineering. In this paper,two new methods of optimal design of water utilization network with energy integration in process industries are presented, that is, stepwise and simultaneous optimization methods. They are suitable for both single contaminant and multi-contaminant systems, and the integration of energy can be carried out in the whole process system, not only limited in water network, so that energy can be utilized effectively. The two methods are illustrated by case study.  相似文献   

7.
It is shown in this article that by changing the initial operation condition of the batch processes, the dynamic performance of the system can be varied largely, especially for the initial operational temperature of the exothermic reaction. The initial operation condition is often ignored in the designing batch processes for flexibility against disturbances or parameter variations. When the initial condition is not rigid as in the case of a batch reactor, where the initial reaction temperature is quite arbitrary, optimization can also be applied to determine the "best" initial condition to use. Problems for dynamic flexibility analysis of exothermic reaction including initial temperature and process operation can be formulated as dynamic optimization problems. Formulations are derived when the initial conditions are considered or not. When the initial conditions are considered, the initial condition can be transferred into control variables in the first optimal step. The solution of the dynamic optimization is on the basis of Rugge-Kutta integration algorithm and decomposition search algorithm. This method, as illustrated and tested with two highly nonlinear process problems, enables the determination of the optimal level. The dynamic performance is improved by the proposed method in the two exothermic reaction examples.  相似文献   

8.
In order to take full advantage of regeneration process to reduce fresh water consumption and avoid the accumu-lation of trace contaminants, regeneration reuse and regeneration recycle should be distinctive. A stepwise opti-mal design for water network is developed to simplify solution procedures for the formulated MINLP problem. In this paper, a feasible water reuse network framework is generated. Some heuristic rules from water reuse net-work are used to guide the placement of regeneration process. Then the outlet stream of regeneration process is considered as new water source. Regeneration reuse network structure is obtained through an iterative optimal procedure by taking the insights from reuse water network structure. Furthermore, regeneration recycle is only utilized to eliminate fresh water usage for processes in which regeneration reuse is impossible. Compared with the results obtained by relevant researches for the same example, the present method not only provides an appro-priate regeneration reuse water network with minimum fresh water and regenerated water flow rate but also sug-gests a water network involving regeneration recycle with minimum recycle water flow rate. The design can utilize reuse, regeneration reuse and regeneration recycle step by step with minor water network structure change to achieve better flexibility. It can satisfy different demands for new plants and modernization of existing plants. ? 2016 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. Al rights reserved.  相似文献   

9.
具有多个不同质量资源网络的设计与目标值确定   总被引:1,自引:0,他引:1       下载免费PDF全文
This paper presents a new design procedure for the networks with multiple resources, such as hydrogen and water, of different qualities. The minimum consumption targets of the resources and pinch-causing sources can be identified as well during design. The objective of this work is to reduce the consumption of the resources with higher quality due to their higher cost. A few examples are investigated to show the proposed method. For a net-work of single resource with single contaminant, there is often only one pinch point for the resource. On the other hand, for a network of multiple resources with single contaminant, there might be a few different pinch points. Each resource might have its own pinch point, if its amount is sufficient. The contaminant concentration of the pinch-causing source for a resource with lower concentration will be below that of the higher-concentration resource(s).  相似文献   

10.
Various methods for production of polysilicon have been proposed for lowering the production cost and energy consumption, and enhancing productivity, which are critical for industrial applications. The fluidized bed chemical vapor deposition (FBCVD) method is a most promising alternative to conventional ones, but the homogeneous reaction of silane in FBCVD results in unwanted formation of fines, which will affect the product quality and output. There are some other problems, such as heating degeneration due to undesired polysilicon deposition on the walls of the reactor and the heater. This article mainly reviews the technological develop-ment on FBCVD of polycrystalline silicon and the research status for solving the above problems. It also identifies a number of chal-lenges to tackle and principles should be followed in the design of a FBCVD reactor.  相似文献   

11.
The quality standards for Fructus Comi have been established based on the effects of the manufacturing processes.Three critical process parameters(CPPs) of extraction,filtration,and concentration to prepare Fructus Comi concentrate were identified by Plackett-Burman design with a single batch of Fructus Corni,which were heating medium temperature,extraction time,and water addition.Morroniside yield,loganin yield,and dry matter yield were process critical quality attributes(CQAs).CPPs arranged with a Box-Behnken design were applied to treat different batches of Fructus Comi After constructing a model that included CPPs,material propertie s,and process CQAs,loganin content was found to be the critical material attribute(CMA).The design space was calculated with a probability method.According to the limits of process CQAs,the minimum content of loganin in Fructus Corni was calculated with an error propagation method,which was 6.92 mg·g~(-1).When the content of loganin in Fructus Corni reaches up to 6.92 mg·g~(-1), the material is considered high-quality and is most suitable for the process.High-quality material can be used for production of Fructus Comi concentrate.This method can also be used to set material quality standards for other Chinese medicines.  相似文献   

12.
反应精馏过程中的多稳态分析   总被引:3,自引:0,他引:3  
Reactive distillation processes for synthesis of ethylene glycol (EG) and ethyl tert-butyl ether (ETBE) were modeled with the simulation package ASPEN PLUS. The input multiplicity and output multiplicity were discussed with the method of sensitivity analysis for both cases. In EG production process, steady state multiplicities were studied in terms of effective liquid holdup volume and boil-up ratio. In ETBE synthesis process, the user kinetic subroutine was supplied into ASPEN PLUS firstly, and then the composition, temperature and reaction-rate profiles within the reactive distillation column were presented in detail. A set of stable solution branches based on distinct initial guesses for a range of boil-up ratio were found in EG synthesis. Input multiplicities were observed for a range of reboiler duty at several values of reflux ratio for ETBE synthesis process. These results can be used to avoid excessive energy consumption and achieve optimum design of reactive distillation column.  相似文献   

13.
Method for constructing the optimal water supply line and formulas for calculating the targets for single-contaminant regeneration recycling water systems are improved to apply to the situation of variational pararneters in this article. Based on these extending methods, the effect of varying freshwater consumption and regenerated water flow rate on the optimizing results are investigated. The interactions of parameters of regeneration recycling systems are summarized. Finally, all the conclusions are illustrated from the results of mathematical programming through an example.  相似文献   

14.
A novel methodology is presented for simultaneously optimizing synthesis and cleaning schedule of flexible heat exchanger network (HEN) by genetic/simulated annealing algorithms (GA/SA). Through taking into account the effect of fouling process on optimal network topology, a preliminary network structure possessing twofold oversynthesis is obtained by means of pseudo-temperature enthalpy (T-H) diagram approach prior to simultaneous optimization. Thus, the computational complexity of this problem classified as NP (Non-deterministic Polynomial)-complete can be significantly reduced. The promising matches resulting from preliminary synthesis stage are further optimized in parallel with their heat exchange areas and cleaning schedule. In addition, a novel continuous time representation is introduced to subdivide the given time horizon into several variable-size intervals according to operating periods of heat exchangers, and then flexible HEN synthesis can be implemented in dynamic manner. A numerical example is provided to demonstrate that the presented strategy is feasible to decrease the total annual cost (TAC) and further improve network flexibility, but even more important, it may be applied to solve large-scale flexible HEN synthesis problems.  相似文献   

15.
In this paper, by combining a stochastic optimization method with a refrigeration shaft work targeting method, an approach for the synthesis of a heat integrated complex distillation system in a low-temperature process is presented. The synthesis problem is formulated as a mixed-integer nonlinear programming (MINLP) problem, which is solved by simulated annealing algorithm under a random procedure to explore the optimal operating parameters and the distillation sequence structure. The shaft work targeting method is used to evaluate the minimum energy cost of the corresponding separation system during the optimization without any need for a detailed design for the heat exchanger network (HEN) and the refrigeration system (RS). The method presented in the paper can dramatical y reduce the scale and complexity of the problem. A case study of ethylene cold-end separation is used to il ustrate the application of the approach. Compared with the original industrial scheme, the result is encouraging.  相似文献   

16.
The problem of optimal synthesis of an integrated water system is addressed in this study, where water using processes and water treatment operations are combined into a single network such that the total cost of fresh water and wastewater treatment is globally minimized. A superstructure that incorporates all feasible design alterna- tives for wastewater treatment, reuse and recycle, is synthesized with a non-linear programming model. An evolutionary approach--an improved particle swarm optimization is proposed for optimizing such systems. Two simple examples are .Presented.to illustrate the global op.timization of inte.grated water networks using the proposed algorithm.  相似文献   

17.
A sequential three-step programming method is proposed for determining the minimum flowrate of fresh water and corresponding regenerated water in water-using system of single contaminant with regeneration reuse.In step 1, a programming with the objective of min fws is used to determine the minimum flowrate of fresh water,in which the mathematical representation is a mixed integer nonlinear programming (MINLP1). Then under the same constraints with step 1, a programming with the objective of min freg in step 2 and a programming with the objective of rain Cr in step 3 are subsequently used to determine the minimum flowrate of regenerated water and the minimum inlet concentration to regeneration process corresponding to the minimum flowrate of fresh water based on step 1. The method is easy to apply because we only need to change the objective function but keep the constraints constant to go along the following steps after step 1. In addition, the relationship between the fresh water flowrate required, fws, and inlet concentration to regeneration process, Cr, is investigated. It is found that there exist three relationships between fws and Cr, which indicate three possibilities for Cb: below the pinch, above the pinch or at the pinch. Therefore, a new conclusion is drawn, which differs from that “regeneration of water at pinch minimizes fresh water flowrate“ derived in literature and indicates that in some cases, regeneration at other point also minimizes fresh water flowrate.  相似文献   

18.
This paper presents a superstructure-based formulation for the synthesis of mass-exchange networks (MENs) considering multiple components. The superstructure is simplified by directly using the mass separation agents (MSA) from their sources, and therefore the automatic synthesis of the multi-component system involved in the MENs can be achieved without choosing a 'key-component' either for the whole process or the mass exchangers A mathematical model is proposed to carry out the optimization process. The concentrations, flow rates, matches and unit operation displayed in the obtained network constitute the exact representation of the mass exchange process in terms of all species in the system. An example is used to illustrate and demonstrate the application of the proposed method.  相似文献   

19.
通过流股的合理合并改进用水网络的能量效率   总被引:2,自引:0,他引:2  
Water-using operations in the process industry have demands for water usually both on water quality and temperature, and the existing mathematical models of heat exchange networks cannot guarantee the energy performance of a water network optimal. In this paper, the effects of non-isothermal merging on energy performance of water allocation networks are analyzed, which include utility consumption, total heat exchange load, and number of heat exchange matches. Three principles are proposed to express the effects of non-isothermal merging on energy performance of water allocation networks. A rule of non-isothermal merging without increasing utility consumption is deduced. And an approach to improve energy performance of water allocation network is presented. A case study is given to demonstrate the method.  相似文献   

20.
This article deals with the evaluation of the consumption of energy for a steady state solvent extraction in a novel L-shaped pulsed sieve-plate column,which is highly required for design and optimization of the periodic flow processes for industrial applications.In this regard,a comprehensive evaluation on the energy consumption in case of a pulsed flow for three different chemical systems is conducted and besides the influence of pulsation intensity,the effect of geometrical parameters including the plate spacing and the plate free area is investigated as well.Moreover,the concept ofcharacteristic velocity models at flooding points is evaluated with respect to the variation of pressure drop along the column at different operational conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号