首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CeO2 films were irradiated with 200 MeV Au ions in order to investigate the damages created by electronic energy deposition. In the Raman spectra of the ion-irradiated films, a broad band appears at the higher frequency side of the F2g peak of CeO2. The band intensity increases as ion fluence increases. Furthermore, the F2g peak becomes asymmetric with a low-frequency tail. In order to understand the origin of these spectral changes, an unirradiated CeO2 film was annealed in vacuum at 1000 °C. By comparing the results for the irradiation and for the annealing, it is concluded that the broad band obtained for irradiated samples contains the peak observed for the annealed sample. The F2g peak becomes asymmetric with a low-frequency tail by the irradiation as well as the annealing. Therefore, the above-mentioned changes in the Raman spectra caused by 200 MeV Au irradiation is closely related to the creation of oxygen vacancies.  相似文献   

2.
We report damage creation and annihilation under energetic ion bombardment at a fixed fluence. MOCVD grown GaN thin films were irradiated with 80 MeV Ni ions at a fluence of 1 × 1013 ions/cm2. Irradiated GaN thin films were subjected to rapid thermal annealing for 60 s in nitrogen atmosphere to anneal out the defects. The effects of defects on luminescence were explored with photoluminescence measurements. Room temperature photoluminescence spectra from pristine sample revealed presence of band to band transition besides unwanted yellow luminescence. Irradiated GaN does not show any band to band transition but there is a strong peak at 450 nm which is attributed to ion induced defect blue luminescence. However, irradiated and subsequently annealed samples show improved band to band transitions and a significant decrease in yellow luminescence intensity due to annihilation of defects which were created during irradiation. Irradiation induced effects on yellow and blue emissions are discussed.  相似文献   

3.
Unalloyed molybdenum and oxide dispersion strengthened (ODS) molybdenum were irradiated at 300 °C and 600 °C in HFIR to neutron fluences of 0.2, 2.1, and 24.3 × 1024 n/m2 (E > 0.1 MeV). The size and number density of voids and loops as well as the measured irradiation hardening and electrical resistivity were found to increase sub-linearly with fluence. This supports the idea that the formation of the extended defects that produce irradiation hardening in molybdenum is the result of a nucleation and growth process rather than the formation of sessile defects directly from the displacement damage cascades. This conclusion is further supported by molecular dynamics (MD) simulations of cascade damage. The unalloyed molybdenum had a low impurity interstitial content with less irradiation hardening and lower change in electrical resistivity than is observed for ODS Mo. This result suggests that high-purity can result in slightly improved resistance to irradiation embrittlement in molybdenum at low fluences.  相似文献   

4.
The synthesis of nanostructured polypyrrole (Ppy) films by electrochemical process and their modifications by electronic excitations induced by swift heavy ion irradiations is reported in this paper. The electrical property of ion beam irradiated polypyrrole was investigated at low temperature by resistivity measurements. The structural and optical properties were also studied using X-ray diffraction (XRD), UV-vis spectroscopy and scanning electron microscopy (SEM). At low temperature, the polypyrrole films show the metallic behaviour after ion beam irradiation. UV-vis spectroscopy shows a red shift in the absorbance edge and thus reduction in band gap with increasing ion fluence. The structural studies show that the percentage crystallinity improves with increase in ion fluence. The SEM study corroborates the results of structural analysis and shows the formation of rod type structures along with the evolution of amorphous phase with increasing ion fluence.  相似文献   

5.
CdTe polycrystalline thin films possessing hexagonal phase regions are obtained by spray deposition in presence of a high electric field. Thin film samples are irradiated with 100 MeV Ag ions using Pelletron accelerator to study the swift heavy ion induced effects. The ion irradiation results in the transformation of the metastable hexagonal regions in the films to stable cubic phase due to the dense electronic excitations induced by beam irradiation. The phase transformation is seen from the X-ray diffraction patterns. The band gap of the CdTe film changes marginally due to ion irradiation induced phase transformation. The value changes from 1.47 eV for the as deposited sample to 1.44 eV for the sample irradiated at the fluence 1×1013 ions/cm2. The AFM images show a gradual change in the shape of the particles from rod shape to nearly spherical ones after irradiation.  相似文献   

6.
Damage effects in GaAs/Ge solar cells irradiated by <200 keV protons were studied by measuring their electrical properties and spectral response together with SRIM simulations. Proton energies of 40, 70 and 170 keV were chosen. Experimental results show that the short circuit current, open circuit voltage and maximum power decrease with increasing proton fluence. The degradation of the open circuit voltage is highest for 70 keV irradiation and lowest for 40 keV irradiation. The degradation of short circuit current decreases with increasing proton energy. According to SRIM simulations and spectral response analysis, the above changes in electrical properties are mainly related to damage in different regions of the solar cells.  相似文献   

7.
Cz n-type Si(100) wafers were implanted at room temperature with 160 keV He ions at a fluence of 5 × 1016/cm2 and 110 keV H ions at a fluence of 1 × 1016/cm2, singly or in combination. Surface phenomena and defect microstructures have been studied by various techniques, including scanning electron microscopy (SEM), atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (XTEM). Surface exfoliation and flaking phenomena were only observed on silicon by successive implantation of He and H ions after subsequent annealing at temperatures above 400 °C. The surface phenomena show strong dependence on the thermal budget. At annealing temperatures ranging from 500 to 700 °C, craters with size of about 10 μm were produced throughout the silicon surface. As increasing temperature to 800 °C, most of the implanted layer was sheared, leaving structures like islands on the surface. AFM observations have demonstrated that the implanted layer is mainly transfered at the depth around 960 nm, which is quite consistent with the range of the ions. XTEM observations have revealed that the additional low fluence H ion implantation could significantly influence thermal growth of He-cavities, which gives rise to a monolayer of cavities surrounded by a large amount of dislocations and strain. The surface exfoliation effects have been tentatively interpreted in combination of AFM and XTEM results.  相似文献   

8.
We report here the physico-chemical changes brought about by high electronic energy deposition of gold ions in HCl doped polyaniline (PANI) thin films. PANI thin films were synthesized by in situ polymerization technique. The as-synthesized PANI thin films of thickness 160 nm were irradiated using Au7+ ion of 100 MeV energy at different fluences, namely, 5 × 1011 ions/cm2 and 5 × 1012 ions/cm2, respectively. A significant change was seen after irradiation in electrical and photo conductivity, which may be related to increased carrier concentration, and structural modifications in the polymer film. In addition, the high electronic energy deposition showed other effects like cross-linking of polymer chains, bond breaking and creation of defect sites. AFM observations revealed mountainous type features in all (before and after irradiation) PANI samples. The average size (diameter) and density of such mountainous clusters were found to be related with the ion fluence. The AFM profiles also showed change in the surface roughness of the films with respect to irradiation, which is one of the peculiarity of the high electronic energy deposition technique.  相似文献   

9.
Thin films of nickel ferrite of thickness ∼100 and 150 nm were deposited by pulsed laser deposition. The films were irradiated with a 200 MeV Ag15+ beam of three fluences 1 × 1012, 2 × 1012 and 4 × 1012 ions/cm2. X-ray diffraction showed a decrease in the intensity of peaks indicating progressive amorphisation with increased irradiation fluence. Fourier transform infra-red and Raman spectra of pristine and irradiated films were also recorded which showed a degradation of the crystallinity of the samples after irradiation. The damage cross section of the infra-red bands was determined. It was found that the two bands at 557 and 614 cm−1 did not show similar behaviour with fluence.  相似文献   

10.
The SHI irradiation induced effects on magnetic properties of MgB2 thin films are reported. The films having thickness 300-400 nm, prepared by hybrid physical chemical vapor deposition (HPCVD) were irradiated by 200 MeV Au ion beam (S∼ 23 keV/nm) at the fluence 1 × 1012 ion/cm2. Interestingly, increase in the transition temperature Tc from 35.1 K to 36 K resulted after irradiation. Substantial enhancement of critical current density after irradiation was also observed because of the pinning provided by the defects created due to irradiation. The change in surface morphology due to irradiation is also studied.  相似文献   

11.
Titanium nitride thin films were deposited on Si(1 0 0) substrates by using a low energy (2.3 KJ) Mather-type plasma focus device. The composition of the deposited films was characterized by X-ray diffraction (XRD). The crystallite size has strong dependence on the numbers of focus shots. The crystallinity of TiN thin films is found to increase with increasing the number of focus shots. The effect of different number of focus shots on micro structural changes of thin films was characterized by Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM). SEM results showed net-like structure for film deposited for 15 numbers of shots, which are elongated grains of Si3N4 in amorphous form embedded into TiN crystals. The average surface roughness was calculated from AFM images of the thin films. These results indicated that the average surface roughness increased for films deposited with increased number of focus shots. The least crystallite size and roughness are observed for film deposited with 25 focus shots.  相似文献   

12.
In order to study structural, thermal and optical behavior, thin flat samples of polyethersulfone were irradiated with oxygen and silicon ions. The changes in properties were analyzed using different techniques viz: X-ray diffraction, thermo-gravimetric analysis, Fourier transform infrared, UV-visible and photoluminescence spectroscopy. A noticeable increase in the intensity of X-ray diffraction peaks was observed after irradiation with 84 MeV oxygen ions at low and medium fluences, which may be attributed to radiation-induced cross-linking in polymer. Fourier transform infrared and thermo-gravimetric analysis corroborated the results of X-ray diffraction analysis. No noticeable change in the Fourier transform infrared spectra of oxygen ion irradiated polyethersulfone were observed even at the highest fluence of 1 × 1013 ions cm−2, but after irradiation with silicon ions, a reduction in intensity of almost all characteristic bands was revealed. An increase in the activation energy of decomposition of polyethersulfone was observed after irradiation with 84 MeV oxygen ions up to medium fluences but degradation was revealed at higher fluences. Similar trends were observed by photoluminescence analysis.  相似文献   

13.
Swift heavy ion irradiation has been successfully used to modify the structural, optical, and gas sensing properties of SnO2 thin films. The SnO2 thin films prepared by sol-gel process were irradiated with 75 MeV Ni+ beam at fluences ranging from 1 × 1011 ion/cm2 to 3 × 1013 ion/cm2. Structural characterization with glancing angle X-ray diffraction shows an enhancement of crystallinity and systematic change of stress in the SnO2 lattice up to a threshold value of 1 × 1013 ions/cm2, but decrease in crystallinity at highest fluence of 3 × 1013 ions/cm2. Microstructure investigation of the irradiated films by transmission electron microscopy supports the XRD observations. Optical properties studied by absorption and PL spectroscopies reveal a red shift of the band gap from 3.75 eV to 3.1 eV, and a broad yellow luminescence, respectively, with increase in ion fluence. Gas response of the irradiated SnO2 films shows increase of resistance on exposure to ammonia (NH3), indicating p-type conductivity resulting from ion irradiation.  相似文献   

14.
While previous experimental studies suggest that the presence of nanostructure is detrimental to the phase-transition resistance under an irradiation environment, we have recently found an opposite effect - nanostructure enhances phase-transition resistance. Here we analyze the change in free energy of an irradiated single-phase nanocrystalline material and explain the radiation tolerance (characterized by the resistance to phase-transition) in terms of two competing effects: (i) a smaller grain size tends to lower the free energy because the accumulation of point defects (mainly vacancies) in the grain interior is suppressed and (ii) a smaller grain size tends to increase the free energy because the area fraction of grain boundary is larger. For a two-phase nanocrystalline material, the heat of mixing between the two-phases often needs to be sufficiently positive so that the ion-beam mixing is avoided. Our analysis explains all previous experimental results where a nanostructure is found to either enhance or lower the phase-transition resistance.  相似文献   

15.
Nanophases of TiO2 are achieved by irradiating polycrystalline thin films of TiO2 by 100 MeV Au ion beam at varying fluence. The surface morphology of pristine and irradiated films is studied by atomic force microscopy (AFM). Phase of the film before and after irradiation is identified by glancing angle X-ray diffraction (GAXRD). The blue shift observed in UV-vis absorption edge of the irradiated films indicates nanostructure formation. Electron spin resonance (ESR) studies are carried out to identify defects created by the irradiation. The nanocrystallisation induced by SHI irradiation in polycrystalline thin films is studied.  相似文献   

16.
Radiation-induced changes in hydroxypropyl methylcellulose (HPMC) films under electron irradiation were investigated and correlated with dose. Polymer samples were irradiated in air at room temperature by an electron beam accelerator in the range of 0-100 kGy. Various properties of the irradiated films were studied using a Ultraviolet-Visible spectrophotometer and Fourier transform infrared spectroscopy and thermogravimetric analysis. Electron irradiation was found to induce changes in the physical, chemical and thermal properties, depending on the irradiation dose.  相似文献   

17.
Small angle neutron scattering as a function of temperature, differential thermal analysis, electrical resistivity and transmission electron microscopy studies have been performed in low rate neutron irradiated single crystalline molybdenum, at room temperature, for checking the evolution of the defects agglomerates in the temperature interval between room temperature and 1200 K. The onset of vacancies mobility was found to happen in temperatures within the stage III of recovery. At around 550 K, the agglomerates of vacancies achieve the largest size, as determined from the Guinier approximation for spherical particles. In addition, the decrease of the vacancy concentration together with the dissolution of the agglomerates at temperatures higher than around 920 K was observed, which produce the release of internal stresses in the structure.  相似文献   

18.
Strained SiGe/Si structures have been proposed as substrates for fabrication of high speed metal oxide semiconductor transistors. However, influence of strain and/or presence of Ge atoms on damage creation during ion irradiation have not been explored to a significant extent. In this study, Rutherford backscattering spectrometry (RBS) was used to characterize Si1−xGex/Si structures irradiated by 140 keV He+ ions at room temperature. When compared with pure Si, strained samples show enhanced damage accumulation as a function of He fluence. Channeling angular scans did not reveal any specific configuration of displacements. Possible mechanisms for enhanced damage in strained Si are discussed.  相似文献   

19.
Ni thin films (∼50 nm) on silicon substrates have been irradiated from 100 MeV swift heavy ions of Fe7+ with a fluence of 1012 ions cm−2. SEM studies show a nice feature of interwoven grains which looks like a knitted network which has been resolved as a spherical grainy structure from AFM studies. Chemical phase identification of the grains has been done from XRD studies and it is found that there is a formation of the Ni2Si silicide phase having average grain size of ∼70 nm. The devices have also been characterized from I-V characteristics before and after the irradiation at varying temperature from LN2 to room temperature. The current across the irradiated interface has increased by two orders of magnitude as compared to the unirradiated ones and show a nearly temperature independent behaviour. MR (magnetoresistance) has been studied from the current flow data in magnetic fields up to 10 kG. Unirradiated devices do not show any effect on current transport in external magnetic field. M-H characteristics of the irradiated devices show the typical magnetic behaviour of nano particles like superparamagnetic behaviour. The MR features has been related to the M-H variations. The observed results show the formation of magnetic nano grains due to interfacial intermixing in these devices of Ni/n-Si. The role of swift heavy ions for nano grain fabrication has been discussed and the observed properties have been understood by considering the formation of a nano magnetic granular phase.  相似文献   

20.
We have investigated the damage morphology and magnetic properties of titanium dioxide thin films following implantation with Fe ions. The titanium dioxide films, having a polycrystalline anatase structure, were implanted with 100 keV 56Fe+ ions to a total fluence of 1.3 × 1016 ions/cm2. The ion bombardment leads to an amorphized surface with no indication of the presence of secondary phases or Fe clusters. The ion-beam induced damage manifested itself by a marked change in surface morphology and film thickness. A room temperature ferromagnetic behaviour was observed by SQUID in the implanted sample. It is believed that the ion-beam induced damage and defects in the polycrystalline anatase film were partly responsible for the observed magnetic response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号