首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Converting solar energy efficiently into hydrogen is a promising way for renewable fuels technology. However, high-temperature heat transfer enhancement of solar thermochemical process is still a pertinent challenge for solar energy conversion into fuels. In this paper, high-temperature heat transfer enhancement accounting for radiation, conduction, and convection heat transfer in porous-medium reactor filled with application in hydrogen generation has been investigated. NiFe-Aluminate porous media is synthesized and used as solar radiant absorber and redox material. Experiments combined with numerical models are performed for analyzing thermal characteristics and chemical changes in solar receiver. The reacting medium is most heated by radiation heat transfer and higher temperature distribution is observed in the region exposed to high radiation heat flux. Heat distribution, O2 and H2 yield in the reacting medium are facilitated by convective reactive gas moving through the medium's pores. The temperature gradient caused by thermal transition at fluid-solid interface could be more decreased as much as the reaction chamber can store the transferred high-temperature heat flux. However, thermal losses due to radiation flux lost at the quartz glass are obviously inevitable.  相似文献   

2.
Energy analysis of space solar dynamic heat receivers employing solid–liquid phase change storage is developed. The heat receiver is a critical component of a solar dynamic system. Phase change thermal energy storage is used in the heat receiver. The energy analysis presented here can be used to understand the energy transfer in the heat receiver and thermal energy storage in phase change materials (PCM). The heat receiver cavity radiation mathematical model and the working fluid tube heat model are established. Energy loss, energy absorbed by gas, the latent and sensible thermal energy storage in PCM, maximum tube temperature, gas outlet temperature and liquid PCM fraction were calculated. The results are analyzed and could be used in heat receiver design.  相似文献   

3.
Solar Parabolic Trough Collectors (PTCs) are currently used for the production of electricity and applications with relatively higher temperatures. A heat transfer fluid circulates through a metal tube (receiver) with an external selective surface that absorbs solar radiation reflected from the mirror surfaces of the PTC. In order to reduce the heat losses, the receiver is covered by an envelope and the enclosure is usually kept under vacuum pressure. The heat transfer and optical analysis of the PTC is essential to optimize and understand its performance under different operating conditions. In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented as well. The partial differential equations were discretized and the nonlinear algebraic equations were solved simultaneously. Finally, to validate the numerical results, the model was compared with experimental data obtained from Sandia National Laboratory (SNL) and other one dimensional heat transfer models. Our results showed a better agreement with experimental data compared to other models.  相似文献   

4.
Thermal energy storage improves the load stability and efficiency of solar thermal power plants by reducing fluctuations and intermittency inherent to solar radiation. This paper presents a numerical study on the transient response of packed bed latent heat thermal energy storage system in removing fluctuations in the heat transfer fluid (HTF) temperature during the charging and discharging period. The packed bed consisting of spherical shaped encapsulated phase change materials (PCMs) is integrated in an organic Rankine cycle-based solar thermal power plant for electricity generation. A comprehensive numerical model is developed using flow equations for HTF and two-temperature non-equilibrium energy equation for heat transfer, coupled with enthalpy method to account for phase change in PCM. Systematic parametric studies are performed to understand the effect of mass flow rate, inlet charging system, storage system dimension and encapsulation of the shell diameter on the dynamic behaviour of the storage system. The overall effectiveness and transient temperature difference in HTF temperature in a cycle are computed for different geometrical and operational parameters to evaluate the system performance. It is found that the ability of the latent heat thermal energy storage system to store and release energy is significantly improved by increasing mass flow rate and inlet charging temperature. The transient variation in the HTF temperature can be effectively reduced by decreasing porosity.  相似文献   

5.
The solar energy flux distribution on the outer wall of the inner absorber tube of a parabolic solar collector receiver is calculated successfully by adopting the Monte Carlo Ray-Trace Method (MCRT Method). It is revealed that the non-uniformity of the solar energy flux distribution is very large. Three-dimensional numerical simulation of coupled heat transfer characteristics in the receiver tube is calculated and analyzed by combining the MCRT Method and the FLUENT software, in which the heat transfer fluid and physical model are Syltherm 800 liquid oil and LS2 parabolic solar collector from the testing experiment of Dudley et al., respectively. Temperature-dependent properties of the oil and thermal radiation between the inner absorber tube and the outer glass cover tube are also taken into account. Comparing with test results from three typical testing conditions, the average difference is within 2%. And then the mechanism of the coupled heat transfer in the receiver tube is further studied.  相似文献   

6.
Parabolic trough receiver is a key component to convert solar energy into thermal energy in the parabolic trough solar system. The heat loss of the receiver has an important influence on the thermal efficiency and the operating cost of the power station. In this paper, conduction and radiation heat losses are analyzed respectively to identify the heat loss mechanism of the receiver. A 2-D heat transfer model is established by using the direct simulation Monte Carlo method for rarefied gas flow and heat transfer within the annulus of the receiver to predict the conduction heat loss caused by residual gases. The numerical results conform to the experimental results, and show the temperature of the glass envelope and heat loss for various conditions in detail. The effects of annulus pressure, gas species, temperature of heat transfer fluid, and annulus size on the conduction and radiation heat losses are systematically analyzed. Besides, the main factors that cause heat loss are analyzed, providing a theoretical basis for guiding the improvement of receiver, as well as the operation and maintenance strategy to reduce heat loss.  相似文献   

7.
Systems using molten salt as thermal media have been proposed for solar thermal power generation and for synthetic fuel production. We have been developing molten salt solar receivers, in which molten salt is heated by concentrated solar radiation, in the Solar Hybrid Fuel Project of Japan. A cavity shaped receiver, which is suitable for a beam-down type solar concentration system, was considered. In order to design molten salt solar receivers, a numerical simulation program for the prediction of characteristics of receivers was developed. The simulation program presents temperature distributions of a receiver and molten salt with the use of heat flux distribution of solar radiation and properties of composing materials as input data. Radiation to heat conversion efficiency is calculated from input solar power and heat transferred to molten salt. The thermal resistance of molten salt and the maximum discharge pressure of molten salt pumps were taken into account as restrictions for the design of receivers. These restrictions require control of maximum receiver temperature and pressure drop in the molten salt channel. Based on the incident heat flux distribution formed with a 100 MWth class beam-down type solar concentration system, we proposed a shape of solar receiver that satisfies the requirements. The radiation to heat conversion efficiency of the designed receiver was calculated to be about 90%.  相似文献   

8.
In this paper a detailed one dimensional nonuniform thermal model of a parabolic trough solar collector/receiver is presented. The entire receiver is divided into two linear halves and two inactive ends for the nonuniform solar radiation, heat transfers and fluid dynamics. Different solar radiation and heat transfer modes can be taken into consideration for these four different regions respectively. This enables the study of different design parameters, material properties, operating conditions, fluid flow and heat transfer performance for the corresponding regions or the whole receiver. Then the nonuniform model and the corresponding uniform thermal model are validated with known performance of an existing parabolic trough solar collector/receiver. For applications, the uniform thermal model can be used to quickly compute the integral heat transfer performance of the whole PTC system while the nonuniform thermal model can be used to analyze the local nonuniform solar radiation and heat transfer performance characteristics and nonuniform heat transfer enhancements or optimizations. Later, it could also be effectively used with an intelligent optimization, such as the genetic algorithm or the particle swarm optimization, to quickly evaluate and optimize the characteristics and performance of PTCs under series of nonuniform conditions in detail.  相似文献   

9.
A linear Fresnel collector design with an operation temperature of 300°C or above typically requires a solar flux concentration ratio of at least 20 on the surfaces of the receiver assembly. For the commercial linear Fresnel collector design in this work, the receiver assembly includes a secondary reflector and an evacuated receiver tube. The high‐concentration solar flux may impose additional operating‐temperature requirements on the secondary reflector and receiver tube. Thus, a careful heat‐transfer analysis is necessary to understand the operating temperature of the receiver assembly component surfaces under design and off‐design conditions to guide appropriate material selections. In this work, a numerical heat‐transfer analysis is performed to calculate the temperature distribution of the surfaces of the secondary reflector and receiver glass envelope for a commercial collector design. Operating conditions examined in the heat‐transfer analysis include various wind speeds and solar concentration ratios. The results indicate a surface temperature higher than 100°C on the secondary reflector surface, which suggests that a more advanced secondary reflector material is needed. The established heat‐transfer model can be used for optimization of the other types of linear Fresnel collectors.  相似文献   

10.
In this work, a new modeling coupling the inhomogeneous radiation flux distribution for the dish receiver is proposed and developed. The radiation transmission and absorbing process of the dish concentrating system is achieved by using the Monte Carlo ray tracing method (MCRT method), which reveals the high-order nonuniformity of the irradiance flux distribution on the inner wall of the dish receiver. The implementation of the three-dimensional numerical simulation coupling the heat loss of the dish receiver is by combining the microscopic MCRT method and the macroscopic SIMPLE method. In addition, a coupled photon statistic method is established to ensure the accuracy of heat flux distribution computation. The modeling result reveals that the temperature distributions of the inner receiver surface are significantly influenced by the inhomogeneous radiation flux. The temperature of the high local heat flux density area that lies in the middle part of the inner surface reaches 1374.8 K, which is even higher than the top area. In addition, the combined heat losses from natural convection and surface radiation are analyzed and compared respectively. It is found that the surface radiation heat loss is the predominant heat loss pattern of the combined heat transfer, and the natural convection loss is sensitive to solar intensity and the orientation of dish cavity receiver but changes little with the emissivity of the inner surface.  相似文献   

11.
基于太阳能选择性吸收涂层的辐射性能,建立聚光太阳能吸热管光热耦合传输的数理模型,理论研究聚光太阳能吸热管的吸热传热特性。研究表明,吸热管壁温度随着聚光能流密度增加而线性升高,而吸热效率在中等聚光能流密度时达最大值。太阳能选择性吸收涂层性能对吸热传热有重要影响,具有低红外发射系数涂层的系统吸热效率明显较高,而红外辐射能量损失率则在中等聚光能流密度时最小。管内强迫对流可以显著提高吸热管效能,吸热效率随流速增加而提高,而管壁温度则显著下降。  相似文献   

12.
In this study, a mathematical analysis is presented on the complete interface problem between solar concentration systems and high temperature thermochemical processes. This includes the thermal process starting from the incoming solar radiation up to the heat transfer to a heat carrier fluid or reactants in a given reactor. The system considered comprises a heliostat, a parabolic concentrator and a receiver. The hourly incoming radiation, the hourly reflection and absorption losses on the heliostat and concentrator systems, the radiation flux density distribution in the receiver space, the solar and IR bands radiation exchange and the useful heat transfer are all considered in the analysis. The parameters such as temperature distribution in the receiver as well as thermal efficiency can be calculated for a given case. The model has been verified using the experimental results obtained in two different systems. In addition, a parametric study has been carried out on the global receiver efficiency with respect to temperature.  相似文献   

13.
This paper presents a mathematical model with numerical simulations of the heat transfer across a simple glass window. The model is two-dimensional, transient based upon the energy equation with a source term to account for the solar radiation absorbed through the glass sheet. Variable incident solar radiation and external ambient temperature are considered in the numerical simulations. The governing equations and the associated boundary conditions are discretized by the finite difference approach and the ADI scheme. Numerical simulations are realized for the cases of clear and absorbing glass to show the effect of the glass thickness on the total heat gain, the solar heat gain and the shading coefficient.  相似文献   

14.
为了将太阳能中高温利用的槽式集热器(PTC)设备用于150~180℃中温蒸汽利用,并降低槽式太阳能集热器的成本,设计了一种新型集热管结构,并对其进行了传热模型的理论建模,将其在特定参数下的理论效率值与直通式真空管的效率实验值进行了对比,最后结合两种集热管的经济性进行比较。  相似文献   

15.
In this paper, a thermal analysis of an energy-efficient receiver for solar parabolic trough concentrator is presented. Various porous receiver geometries are considered for the performance evaluation of a solar parabolic trough concentrator. Numerical models are proposed for a porous energy-efficient receiver for internal heat gain characteristics and heat loss due to natural convection. The internal flow and heat transfer analysis is carried out based on a RNG k-? turbulent model, whereas external heat losses are treated as a laminar natural convection model. The numerical models have been solved using the commercial engineering package, FLUENT. The thermal analysis of the receiver is carried out for various geometrical parameters, such as fin aspect ratio, thickness, and porosity, for different heat flux conditions. The inclusion of porous inserts in tubular receiver of solar trough concentrator enhanced the heat transfer about 17.5% with a pressure penalty of 2 kPa. The Nusselt number correlation is proposed based on the extensive numerical data for internal heat transfer inside the receiver. The proposed model is compared with more well-known natural convection models. A comparative study is carried out with different porous geometries to evolve an optimum configuration of energy-efficient receivers.  相似文献   

16.
Z.D. Cheng  Y.L. He  F.Q. Cui  R.J. Xu  Y.B. Tao 《Solar Energy》2012,86(6):1770-1784
In this paper, a more detailed three-dimensional computational model of the whole parabolic trough solar collector (PTC) system and corresponding numerical simulations by combining the Finite Volume Method (FVM) and the Monte Carlo Ray-Trace (MCRT) method were presented. Corresponding codes and solving methods were also developed and applied to simulate and analyze the total involuted photo-thermal conversion process of an experimental LS2 PTC system. The numerical results were compared with experimental data and good agreement was obtained, proving that the model and method used in the present study is feasible and reliable. More details of the characteristics of solar concentrating, solar collecting, fluid dynamics, coupled heat transfer and the whole flow and temperature fields in the receiver were also revealed and discussed. Then some typical heat transfer fluid (HTF) types and residual gas conditions were further studied. It was revealed that the properties of these HTFs/conditions and their varying relations of the fluid temperature affected the characteristics of fluid dynamics, coupled heat transfer and the whole temperature distributions in the receiver, thus affected the thermal loss and the collector efficiency synthetically.  相似文献   

17.
The performance of a parabolic trough collector (PTC)-based steam generation system depends significantly on the heat losses of the solar receiver. This paper presents an experimental study of the heat losses of a double glazing vacuum U-type solar receiver mounted in a PTC natural circulation system for generating medium-temperature steam. Field experiments were performed to determine the overall heat losses of the receiver. Effects of wind, vacuum glass tube, radiation, and structural characteristics on the heat losses were analyzed. The thermal efficiency of the receiver was found to be 0.791 and 0.472 in calm and windy days, respectively, at a test temperature of about 100 °C, whereas the thermal efficiencies became 0.792 and 0.663, respectively, while taking the receiver element into consideration. The heat losses were increased from 0.183 to 0.255 kW per receiver for the two cases tested. It was shown that neither convection nor radiation heat losses may be negligible in the analysis of such U-type solar receivers.  相似文献   

18.
In this paper, a new thermodynamic model for photothermal solar radiation conversion into mechanical through a heat engines is proposed. The developed equations allow for the energy and exergy contents of solar radiation to be found, as well as the energy and exergy efficiencies corresponding to concentration type solar-thermal heat engines operating under a range of conditions. The calculation method remains accurate to other published models when their assumed conditions are imposed to the newly developed model. The heat flux absorbed by the receiver (which is assumed to be a grey body and is placed in the focal point of the solar concentrator) depends on the hemispherical absorptivity and emissivity, concentration ratio and receiver temperature. The model is used to conduct a parametric study regarding the energy and exergy efficiencies of the system for assessing its performance. The use of a selective grey body receiver (having a reduced emissivity and a high absorptivity) for enhancing the conversion efficiency is also studied. If the absorptivity approaches one and the emissivity is low enough the photothermal conversion efficiency becomes superior to the known black body receiver limit of 0.853. It is found that in the limit of receiver emissivity tending to zero and absorptivity lending to one, the present model gives the exergy content of solar radiation because the work generated reaches its maximum. In this situation the energy efficiency approaches the exergy efficiency at 1-ITTIN0/TINS where TS and T0 are the sun and ambient temperatures, respectively. The influence of the ambient temperature on the exergy and energy efficiencies becomes apparent, with effects of up to 15%, particularly for high absorptivity and low emissivity. The heat transfer conductances at sink and source of the heat engine have a considerable impact on the efficiency of solar energy conversion. The present model is developed in line with actual power system operations for better practical acceptance. In addition, some irreversibility parameters (absorptivity, emissivity, heat transfer conductivity, etc.) are studied and discussed to evaluate the possible photothermal solar radiation conversion systems and assess their energy and exergy efficiencies.  相似文献   

19.
Volumetric solar receivers are used in solar power plants to convert concentrated solar radiation into high temperature heat to operate a thermal engine. In general, porous high temperature materials are used for this purpose. Since the pore geometry is important for the efficiency performance of the receiver, current R&D activities focus on the optimization of this quantity. In this study, the influence of slight geometry changes of this component on its temperature distribution and efficiency has been investigated with the objective of an overall improvement. A numerical analysis of the mass and heat transfer through the receiver has been performed. The investigated receiver was an extruded honeycomb structure made out of Silicon Carbide. Additionally, experimental tests have been performed. In these tests, selected receiver samples have been exposed to concentrated radiation. From these tests solar-to-thermal efficiency data have been derived, which could be compared with the calculated data. Two numerical models have been developed. One makes use of the real geometry of the channel (single channel model), the other one considers the receiver to be “porous continuum”, which is described by homogenized properties such as permeability and effective heat conductivity. The experimental parameters such as the average solar heat flux and the mass flow were taken into account in the models as boundary conditions. Various quantities such as the average air outlet temperatures, the temperature distributions and the solar-to-thermal efficiency were used for the comparison. The correspondence between the experimental and numerical results of both numerical models confirms the capability of the approaches for further studies.  相似文献   

20.
A theoretical and numerical study of natural convection of two‐dimensional laminar incompressible flow in a semi‐trapezoidal porous enclosure in the presence of thermal radiation is conducted. The semi‐trapezoidal enclosure has an inclined left wall that in addition to the right vertical wall is maintained at a constant temperature, whereas the remaining (horizontal) walls are adiabatic. The Darcy‐Brinkman isotropic model is utilized. The governing partial differential equations are transformed using a vorticity stream function and nondimensional quantities and the resulting governing nonlinear dimensionless equations are solved using the finite difference method with incremental steps. The impacts of the different model parameters (Rayleigh number [Ra], Darcy number [Da], and radiation parameter [Rd]) on the thermofluid characteristics are studied in detail. The computations show that convective heat transfer is enhanced with the greater Darcy parameter (permeability). The flow is accelerated with the increasing buoyancy effect (Rayleigh number) and heat transfer is also increased with a greater radiative flux. The present numerical simulations are more relevant to hybrid porous media solar collectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号