首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-eight Holstein cows (4 with ruminal cannulas) were blocked by days in milk into 7 groups and then randomly assigned to 1 of 7 balanced 4 × 4 Latin square diet sequences. The diets contained [dry matter (DM) basis] 20% alfalfa silage, 35% corn silage, and 45% concentrate mainly from high-moisture corn and soybean meal. Diets differed in crude protein (CP) content and source of protein supplement: diet A) 15.6% CP, 3.7% solvent-extracted soybean meal (SSBM), 4.5% expeller soybean meal (ESBM); diet B) 16.6% CP, 9.6% SSBM, 0% ESBM; diet C) 16.6% CP, 4.6% SSBM, 5.9% ESBM; and diet D) 17.6% CP, 11.7% SSBM, 0% ESBM. Each experimental period consisted of 14 d for adaptation plus 14 d for collection of production data. Sampling of ruminal digesta and spot sampling of blood, feces, and urine was done on d 26 and 27 of each period. Planned contrasts compared included diet A vs. diet B, diet B vs. diet C, and diet B vs. diet D. There were no effects of diet on most of the production traits measured. However, milk yield tended to be higher for diet B vs. A. Trends were also detected for higher DM intake and weight gain and lower milk yield/DM intake in cows fed diet D vs. diet B. Milk lactose content was higher on diets A and C than on B. Ruminal NH3 was higher on diet D vs. B, but other ruminal metabolites, apparent nutrient digestibility, and estimated bacterial CP synthesis did not differ across diets. Blood and milk urea-N were higher on diets C and D than on B; milk urea-N was higher on diet B than on A. Increasing dietary CP from 16.6% (diet B) to 17.6% (diet D) increased urinary N excretion by 54 g/d and reduced apparent N efficiency (milk N/N intake) by 2.5 percentage units, without altering yield. Under the conditions of this trial, milk production was not improved by feeding rumen-undegraded protein from ESBM or greater amounts of rumen-degraded protein from SSBM. Feeding more than 16.6% CP depressed N efficiency.  相似文献   

2.
The main objective of this experiment was to examine the effects of the percentage and source of crude protein (CP) and the amount of starch in the diet of dairy cows on ruminal fermentation, nutrient passage to the small intestine, and nutrient digestibility. For this purpose, 6 multiparous Holstein cows fistulated in the rumen and duodenum that averaged 73 d in milk were used in a 6 × 6 Latin square design with a 2 × 3 factorial arrangement of treatments. Two sources of CP [solvent-extracted soybean meal (SBM) and a mixture of SBM and a blend of animal-marine protein supplements plus ruminally protected Met (AMB)] and 3 levels of dietary protein (about 14, 16, and 18%) were combined into 6 treatments. On a dry matter (DM) basis, diets contained 25% corn silage, 20% alfalfa silage, 10% cottonseed, 26.7 to 37% corn grain, and 4 to 13.5% protein supplement. Intakes and digestibilities in the rumen and total tract of DM, organic matter, acid and neutral detergent fiber were unaffected by treatments. Increasing dietary CP from 14 to 18% decreased the intake and apparent ruminal and total tract digestion of starch, but increased the proportion of starch consumed by the cows that was apparently digested in the small intestine. At 14% CP, starch intake and total tract digestion were higher for the AMB diet than for the SBM diet, but the opposite occurred at 16% CP. Across CP sources, increasing CP in the diet from 14 to 18% increased the intakes of N and amino acids (AA), and ruminal outflows of nonammonia N, nonammonia nonmicrobial N, each individual AA except Met, total essential AA, and total AA. Across CP percentages, replacing a portion of SBM with AMB increased the intake of Met and Val and decreased the concentration of ammonia N in the rumen, but did not affect the intake of other essential AA or the intestinal supply of any essential AA and starch. The ruminal outflow of microbial N, the proportional contribution of Lys and Met to total AA delivered to the duodenum, and milk yield were unaffected by treatments. Data suggest that the intake of N by high-producing dairy cows that consume sufficient energy and other nutrients to meet their requirements can be decreased to about 600 to 650 g daily without compromising the supply of metabolizable protein if the source and amount of dietary CP and carbohydrate are properly matched.  相似文献   

3.
Early lactating dairy cows were used to determine whether the replacement of solvent-extracted soybean meal [SSBM; a source of rumen-degradable protein (RDP)] with expeller soybean meal (ESBM; a source of rumen-undegradable protein), or the replacement of high-moisture shelled corn (HMSC) with beet pulp (a source of soluble fiber) would be effective in improving efficiency of N usage for milk production. The study was designed as a replicated 4 × 4 Latin square with 21-d periods. Eight multiparous Holstein cows were fed, ad libitum, the following diets, which were based on alfalfa silage and HMSC, and formulated to be isocaloric: 1) basal diet without a protein supplement (negative control diet: NC); 2) NC supplemented with solvent-extracted SBM (diet SSBM); 3) NC supplemented with expeller SBM (diet ESBM); 4) SSBM in which unmolassed dried beet pulp replaced half of the HMSC (diet SSBMBP). Compared with diet NC, protein supplementation increased intake of organic matter and dry matter. Milk and milk protein yields were lower with NC but this diet resulted in the greatest efficiency of N usage for milk production (30% milk N/N intake). Supplementation with ESBM, a proven source of RUP, increased plasma concentrations of histidine and branched-chain amino acids, and reduced milk urea N concentration, but failed to improve the yields of milk or milk protein. Milk fat yield tended to decrease with RUP supplementation. Replacing part of HMSC with soluble fiber from beet pulp (SSBMBP) tended to decrease milk production compared with SSBM; the effect was due to a reduction in dry matter intake. There were no differences among diets SSBM, ESBM, or SSBMBP in urinary excretion of purine derivatives. Neither substitution of ESBM for SSBM nor partial replacement of HMSC with beet pulp altered the efficiency of N usage for milk production or manure N excretion.  相似文献   

4.
Eight ruminally cannulated Holstein cows that were part of a larger lactation trial were used in 2 replicated 4 × 4 Latin squares to quantify effects of supplementing protein as urea, solvent soybean meal (SSBM), cottonseed meal (CSM), or canola meal (CM) on omasal nutrient flows and microbial protein synthesis. All diets contained (% of dry matter) 21% alfalfa silage and 35% corn silage plus 1) 2% urea plus 41% high-moisture shelled corn (HMSC), 2) 12% SSBM plus 31% HMSC, 3) 14% CSM plus 29% HMSC, or 4) 16% CM plus 27% HMSC. Crude protein was equal across diets, averaging 16.6%. The CSM diet supplied the least rumen-degraded protein and the most rumen-undegraded protein. Microbial nonammonia N flow was similar among the true protein supplements but was 14% lower in cows fed urea. In vivo ruminal passage rate, degradation rate, and estimated escape for the 3 true proteins were, respectively, 0.044/h, 0.105/h, and 29% for SSBM; 0.051/h, 0.050/h, and 51% for CSM; and 0.039/h, 0.081/h, and 34% for CM. This indicated that CSM protein was less degraded because of both a faster passage rate and slower degradation rate. Omasal flow of individual AA, branched-chain AA, essential AA, nonessential AA, and total AA all were lower in cows fed urea compared with one of the true protein supplements. Among the 3 diets supplemented with true protein, omasal flow of Arg was greatest on CSM, and omasal flow of His was greatest on CSM, intermediate on CM, and lowest on SSBM. Lower flows of AA and microbial nonammonia N explained lower yields of milk yield and milk components observed on the urea diet in the companion lactation trial. These results clearly showed that supplementation with true protein was necessary to obtain sufficient microbial protein and rumen-undegraded protein to meet the metabolizable AA requirements of high-producing dairy cows.  相似文献   

5.
Sources of variation in rates of in vitro ruminal protein degradation   总被引:2,自引:0,他引:2  
Rates and extents of ruminal protein degradation for casein, solvent soybean meal (SSBM), expeller soybean meal (ESBM), and alfalfa hay were estimated from net appearance of NH3 and total amino acids in in vitro media containing 1 mM hydrazine and 30 mg/L of chloramphenicol. Protein was added at 0.13 mg of N/mL of medium, and incubations were conducted for 4 to 6 h, usually with hourly sampling. Inocula were obtained from ruminally cannulated donor cows fed diets of grass silage or alfalfa and corn silages plus concentrates. Preincubation or dialysis of inocula was used to suppress background NH3 and total amino acids; however, preincubation yielded more rapid degradation rates for casein and SSBM and was used in subsequent incubations. Preincubation with added vitamins, VFA, hemin, or N did not alter protein degradation. Protein degradation rates estimated for SSBM, ESBM, and alfalfa were not different when computed from total N release or N release in NH3 plus total amino acids, regardless of whether amino acids were quantified using ninhydrin colorimetry or o-phthalaldehyde fluorescence. Accounting for the release of peptide-N also did not affect estimated degradation. However, casein degradation rates were more rapid when using total N release or accounting for peptide-N, indicating significant accumulation of small peptides during its breakdown. Rates also were more rapid with inocula from lactating cows versus nonlactating cows with lower feed intake. Protein degradation rates were different due to time after feeding: casein rate was more rapid, but SSBM and ESBM rates were slower with inocula obtained after feeding. Several characteristics of ruminal inoculum that influenced breakdown of the rapidly degraded protein casein did not appear to have direct effects on degradation of protein in soybean meal.  相似文献   

6.
Evaluations of 4 soybean meal (SBM) products were conducted in 3 experiments. The 4 products were 1) solvent SBM (SSBM), 2) SSBM treated with 0.05% baker's yeast and toasted at 100°C (YSBM), 3) expeller SBM (ESBM), and 4) lignosulfonate-treated SBM (LSBM). Multiparous Holstein cows (n = 32; 152 ± 63 d in milk; body weight = 708 ± 77 kg; producing 41 ± 7 kg/d of milk at the beginning of the study) were used in a 4 × 4 Latin square design with 28-d periods to investigate cow responsiveness to supplemental ruminally undegradable protein (RUP) from the SBM products. Dietary treatments were formulated by substituting all of the SSBM and part of the ground corn with YSBM, ESBM, or LSBM to yield isonitrogenous diets. Diets were formulated to provide adequate ruminally degradable protein, but deficient RUP and metabolizable protein supplies. No differences among dietary treatments were observed for dry matter intake, body weight gain, milk and component yields, or efficiency of milk production. The lack of response to changes in SBM source was likely due to an adequate RUP and metabolizable protein supply by all the diets. In situ ruminal degradations of YSBM and LSBM were slower than those of SSBM or ESBM; thus, RUP contents of YSBM and LSBM were greater than those of SSBM or ESBM. The RUP of all SBM products had similar small intestinal digestibility. Available Lys contents, estimated chemically or by using a chick growth assay, were less for YSBM and LSBM than for SSBM or ESBM, suggesting deleterious effects of processing on Lys availability in YSBM and LSBM.  相似文献   

7.
This study investigated the effects of wheat-induced subacute ruminal acidosis (SARA) on rumen bacterial populations and in situ degradabilities of NDF, starch, and crude protein of feeds. Four multiparous dairy goats (BW = 60 ± 3.3 kg) fitted with ruminal cannulas were assigned to a 2 × 2 crossover design (28-d treatment periods separated by a 7-d washout interval). The treatment diets consisted of 2 levels of cracked wheat: 0 (control, corn based concentrate) and 35% (diet-induced SARA, wheat-based concentrate), with a constant forage- (45% alfalfa hay and 5% corn silage of DM) to-concentrate (50% of DM) ratio. Results indicate that diets with a 35% wheat decreased ruminal pH (6.21 vs. 5.98) and increased the duration (1.13 vs. 4.72 h/d) and area (0.12 vs. 0.78 pH × h/d) of ruminal pH below 5.6 and induced SARA. The SARA increased ruminal total volatile fatty acid concentration, from 105.0 to 123.8 mM, and decreased the acetate molar proportion (62.8 vs. 56.6 mol/100 mol) and the acetate-to-propionate ratio (3.5 vs. 2.8). Compared with the control group, SARA decreases the relative abundance of Fibrobacter succinogenes (−59.3%) and Ruminococcus flavefaciens (−68.4%), whereas it increased Succinimonas amylolytica (198.1%) and Ruminobacter amylophilus (125.2%). The SARA decreased 24- and 48-h dry matter (DM) and neutral detergent fiber (NDF) degradabilities of corn silage. The 48-h degradabilities of DM (51.0 vs. 48.2%) and NDF (40.3 vs. 36.0%) in alfalfa hay were not affected by SARA, but the SARA tended to reduce the 24-h DM (49.6 vs. 46.3%) and NDF (37.8 vs. 33.2%) degradabilities. The effective ruminal degradabilities of DM and NDF in alfalfa hay and corn silage were reduced during SARA. In situ degradability parameters of DM and starch of wheat were not affected by SARA, but starch degradability of corn (9.5 vs. 13.3%/h) increased. The SARA reduced in situ 12-h degradabilities of DM and crude protein of soybean meal and extruded soybean without affecting the degradabilities of the other protein supplements (corn gluten meal, cottonseed meal, corn dried distillers grains with solubles, rapeseed meal, and wheat germ meal). These results indicated that the cracked wheat-induced SARA reduced the degradation of NDF in roughages and that of protein in soybean meal (−19.8%) and extruded soy (−18.9%) and increased the starch degradability in corn, due to the increased amylolytic bacteria and decreased cellulolytic bacteria counts in the rumen.  相似文献   

8.
Sixteen (8 ruminally cannulated) multiparous and 8 primiparous lactating Holstein cows were used in 6 replicated 4 × 4 Latin squares to test the effects of feeding supplemental protein as urea, solvent soybean meal (SSBM), cottonseed meal (CSM), or canola meal (CM) on milk production, nutrient utilization, and ruminal metabolism. All diets contained (% of DM) 21% alfalfa silage and 35% corn silage plus 1) 2% urea plus 41% high-moisture shelled corn (HMSC), 2) 12% SSBM plus 31% HMSC, 3) 14% CSM plus 29% HMSC, or 4) 16% CM plus 27% HMSC. Crude protein was equal across diets, averaging 16.6%. Intake and production were substantially reduced, and milk urea, blood urea, and ruminal ammonia were increased on urea vs. the diets supplemented with true protein. Although intake was lower in cows fed SSBM compared with CM, no differences were observed for milk yield among SSBM, CSM, and CM. Yields of fat and protein both were lower on CSM than on CM, whereas SSBM was intermediate. Milk urea and milk protein contents also decreased when CSM replaced SSBM or CM. Diet did not affect ruminal volatile fatty acids except that isobutyrate concentration was lowest on urea, intermediate on CSM, and greatest on SSBM and CM. Urinary excretion of urea N and total N was greatest on urea, intermediate on SSBM and CM, and lowest on CSM. Apparent N efficiency (milk N/N intake) was lower on the CSM diet than on the SSBM diet. Overall, production and N utilization were compromised when the diets of high-yielding dairy cows were supplemented with urea rather than true protein and the value of the true proteins, from most to least effective, was in the order CM > SSBM > CSM.  相似文献   

9.
Ten ruminally cannulated lactating Holstein cows that were part of a larger trial studying the effects of feeding different proteins on milk production were used in a replicated 5 x 5 Latin square to quantify flows of microbial and rumen-undegradable protein (RUP) in omasal digesta. Cows were fed total mixed rations containing (dry matter basis) 44% corn silage, 22% alfalfa silage, 2% urea, and 31% concentrate. The basal diet contained 31% high-moisture corn; equal N from one of four protein supplements was added to the other diets at the expense of corn: 9% solvent soybean meal (SSBM), 10% expeller soybean meal (ESBM), 5.5% blood meal (BM), and 7% corn gluten meal (CGM). Omasal sampling was used to quantify total AA N (TAAN) and nonammonia N (NAN) flows from the rumen. Estimates of RUP were made from differences between total and microbial N flows, including a correction for RUP in the basal diet. Modifying a spectrophotometric assay improved total purine recovery from isolated bacteria and omasal samples and gave estimates of microbial TAAN and NAN flows that were similar to a standard HPLC method. Linear programming, based on AA patterns of the diet and isolated omasal bacteria and ruminal protozoa, appeared to overestimate microbial TAAN and NAN flows compared to the purine assays. Yields of microbial TAAN and NAN determined using any method was not affected by diet and averaged 32 to 35 g NAN per kilogram of organic matter truly digested in the rumen. On average, National Research Council (NRC) equations underpredicted microbial N flows by 152 g/d (vs. HPLC), 168 g/d (vs. spectrophotometry), and 244 g/d (vs. linear programming). Estimates of RUP (means from the HPLC and spectrophotometric methods) were: SSBM, 27%, ESBM, 45%, BM, 60%, and CGM, 73%. Except for CGM, RUP values averaged about 20 percentage units lower than those reported by the NRC.  相似文献   

10.
The aim of this work was to compare use of an o-phthaldialdehyde (OPA) colorimetric assay (OPA-C), which responds to both free AA and peptides, with an OPA fluorimetric assay (OPA-F), which is insensitive to peptides, to quantify rates of ruminal protein degradation in the inhibitor in vitro system using Michaelis-Menten saturation kinetics. Four protein concentrates (expeller-extracted soybean meal, ESBM; 2 solvent-extracted soybean meals, SSBM1 and SSBM2; and casein) were incubated in a ruminal in vitro system treated with hydrazine and chloramphenicol to inhibit microbial uptake of protein degradation products. Proteins were weighed to give a range of N concentrations (from 0.15 to 3 mg of N/mL of inoculum) and incubated with 10 mL of ruminal inoculum and 5 mL of buffer; fermentations were stopped after 2 h by adding trichloroacetic acid (TCA). Proteins were analyzed for buffer-soluble N and buffer extracts were treated with TCA to determine N degraded at t = 0 (FD0). The TCA supernatants were analyzed for ammonia (phenol-hypochlorite assay), total AA (TAA; OPA-F), and TAA plus oligopeptides (OPA-C) by flow injection analysis. Velocity of protein degradation was computed from extent of release of 1) ammonia plus free TAA or 2) ammonia plus free TAA and peptides. Rate of degradation (kd) was quantified using nonlinear regression of the integrated Michaelis-Menten equation. The parameters Km (Michaelis constant) and kd (Vmax/Km), where Vmax = maximum velocity, were estimated directly; kd values were adjusted (Akd) for the fraction FD0 using the equation Akd = kd − FD0/2. The OPA-C assay yielded faster degradation rates due to the contribution of peptides to the fraction degraded (overall mean = 0.280/h by OPA-C and 0.219/h by OPA-F). Degradation rates for SSBM samples (0.231/h and 0.181/h) and ESBM (0.086/h) obtained by the OPA-C assay were more rapid than rates reported by the National Research Council (NRC). Both assays indicated that the 2 SSBM differed in rumen-undegradable protein (RUP) content; the more slowly degraded SSBM had RUP content (35% by OPA-C) similar to that reported by the NRC. The RUP content of ESBM (42% by OPA-C) was lower than the NRC value. Preliminary studies with 4 additional protein concentrates confirmed that accounting for peptide formation increased degradation rate; however, a trend for an interaction between assay and protein source suggested that peptide release made a smaller contribution to rate for more slowly degraded proteins. The OPA-C assay is a simple and reliable method to quantify formation of small peptides.  相似文献   

11.
In trial 1, 15 Holsteins were fed 3 total mixed rations (TMR) with 33% neutral detergent fiber in 3 × 3 Latin squares (28-d periods). Two TMR contained (dry matter basis): 40% control alfalfa silage (CAS) or 40% ammonium tetraformate-treated alfalfa silage (TAS), 20% corn silage (CS), 33% high-moisture shelled corn (HMSC), 6% solvent soybean meal (SSBM), and 18% crude protein (CP); the third TMR contained 54% red clover silage (RCS), 6% dried molasses, 33% HMSC, 6% SSBM, and 16.3% CP. Silages differed in nonprotein N (NPN) and acid detergent insoluble N (ADIN; % of total N): 50 and 4% (CAS); 45 and 3% (TAS); 27 and 8% (RCS). Replacing CAS with TAS increased intake, yields of milk, fat-corrected milk, protein, and solids-not-fat, and apparent dry matter and N efficiency. Replacing CAS with RCS increased intake and N efficiency but not milk yield. Replacing CAS or TAS with RCS lowered milk urea N, increased apparent nutrient digestibility, and diverted N excretion from urine to feces. In trial 2, 24 Holsteins (8 ruminally cannulated) were fed 4 TMR in 4 × 4 Latin squares (28-d periods). Diets included the CAS, TAS, and RCS (RCS1) fed in trial 1 plus an immature RCS (RCS2; 29% NPN, 4% ADIN). The CAS, TAS, and RCS2 diets contained 36% HMSC and 3% SSBM and the RCS1 diet contained 31% HMSC and 9% SSBM. All TMR had 50% legume silage, 10% CS, 27% neutral detergent fiber, and 17 to 18% CP. Little difference was observed between cows fed CAS and TAS. Intakes of DM and yields of milk, fat-corrected milk, fat, protein, lactose, and solids-not-fat, and milk fat and protein content were greater on alfalfa silage vs. RCS. Blood urea N, milk urea N, ruminal ammonia, and total urinary N excretion were reduced on RCS, suggesting better N utilization on the lower NPN silage. Apparent N efficiency tended to be higher for cows fed RCS but there was no difference when N efficiency was expressed as kilograms of milk yield per kilogram of total N excreted.  相似文献   

12.
Twenty-five (10 ruminally cannulated) Holstein cows averaging 82 +/- 34 d in milk were assigned to 5 x 5 Latin squares (21-d periods) and fed diets supplemented with one of four different proteins to assess effects on production, ruminal metabolism, omasal flow of N fractions, and degradation rates of protein supplements. Total mixed diets contained (dry matter basis) 44% corn silage, 22% alfalfa silage, 2% urea, and 31% concentrate. Five concentrate mixes were fed: 31% high-moisture shelled corn (HMSC; basal); 9% solvent soybean meal (SSBM), 22% HMSC; 10% expeller soybean meal (ESBM), 21% HMSC; 5.5% blood meal (BM), 25.5% HMSC; and 7% corn gluten meal (CGM), 24% HMSC. Diets averaged, respectively, 15.8, 19.1, 19.7, 20.3, and 19.3% crude protein. Feeding the basal diet reduced intake and yield of milk, fat-corrected milk (FCM), and all milk components compared to the protein-supplemented diets. Milk yield was higher for cows fed ESBM and CGM, fat yield was higher for cows fed SSBM and CGM, but FCM and protein yields were not different among cows fed supplemental protein. Based on omasal sampling, mean in vivo estimates of ruminal degradation rate for the crude protein in SSBM, ESBM, BM, and CGM was, respectively, 0.417, 0.179, 0.098, and 0.051/h (computed using passage rates observed for the small particle phase; mean = 0.14/h), and 0.179, 0.077, 0.042, and 0.026/h (computed using a passage rate of 0.06/h). The in vivo degradation rate computed for SSBM at a passage rate = 0.06/h was similar to that estimated using the inhibitor in vitro method. However, in vivo degradation rates computed at passage rate = 0.06/h for ESBM, BM, and CGM were about two, four, and three times more rapid than those estimated by inhibitor in vitro. Experimental proteins fed in this trial will be used as standards for developing in vitro methods for predicting rates of ruminal protein degradation.  相似文献   

13.
Effects of varying the concentrations of hydrazine sulfate (HS) and chloramphenicol (CAP), inhibitors of microbial-N uptake and protein synthesis, on rates of protein degradation estimated from net appearance of NH3 and total amino acids (TAA) were studied in a ruminal in vitro fermentation system. Without inhibitors, recoveries of N added as NH3 and TAA were 4 and 6% after 4-h incubations, and apparent degradation rates estimated from release of NH3 and TAA for casein, solvent soybean meal (SSBM), and expeller soybean meal (ESBM) approached 0. Increasing inhibitor concentrations from the standard amounts of 1 mM HS plus 30 mg of CAP/L to 2 mM HS plus 90 mg of CAP/ L gave rise to numerically greater N recoveries and degradation rates, but these differences were not statistically significant. Compared with the standard inhibitor concentrations, use of 2 mM HS, without CAP, yielded similar recoveries and rates, but 30 or 90 mg of CAP/L, without HS, was not satisfactory. Versus that with 1 mM HS plus 30 mg of CAP/L, media containing 2 mM HS plus 90 mg of CAP/L gave increased TAA recoveries and higher rates for casein, but not SSBM, in the presence of added starch. Faster degradation rates were obtained for casein, but slower rates for SSBM and ESBM, in Sweden versus Wisconsin using inocula from cows fed different diets but with similar CP and energy contents. Differences in microbial catabolism of peptides may account for differences in degradation rates observed between Sweden and Wisconsin. Adding NH3 plus free and peptide-bound amino acids to the inoculum reduced apparent degradation rates, possibly via end-product inhibition. Analysis of data from multiple time-point incubations indicated that casein degradation followed simple, first-order kinetics, while a biexponential model fitted degradation patterns for both SSBM and ESBM.  相似文献   

14.
Twenty-eight (8 with ruminal cannulas) lactating Holstein cows were assigned to seven 4 × 4 Latin squares in a 16-wk trial to study the effects on production and ruminal metabolism of feeding differing proportions of rumen-degraded protein (RDP) from soybean meal and urea. Diets contained [dry matter (DM) basis] 40% corn silage, 15% alfalfa silage, 28 to 30% high-moisture corn, plus varying levels of ground dry shelled corn, solvent- and lignosulfonate-treated soybean meal, and urea. Proportions of the soybean meals, urea, and dry corn were adjusted such that all diets contained 16.1% crude protein and 10.5% RDP, with urea providing 0, 1.2, 2.4, and 3.7% RDP (DM basis). As urea supplied greater proportions of RDP, there were linear decreases in DM intake, yield of milk, 3.5% fat-corrected milk, fat, protein, and solids-not-fat, and of weight gain. Milk contents of fat, protein, and solids-not-fat were not affected by source of RDP. Replacing soybean meal RDP with urea RDP resulted in several linear responses: increased excretion of urinary urea-N and concentration of milk urea-N, blood urea-N, and ruminal ammonia-N and decreased excretion of fecal N; there was also a trend for increased excretion of total urinary N. A linear increase in neutral detergent fiber (NDF) digestibility, probably due to digestion of NDF-N from lignosulfonate-treated soybean meal, was observed with greater urea intake. Omasal sampling revealed small but significant effects of N source on measured RDP supply, which averaged 11.0% (DM basis) across diets. Increasing the proportion of RDP from urea resulted in linear decrease in omasal flow of dietary nonammonia N (NAN) and microbial NAN and in microbial growth efficiency (microbial NAN/unit of organic matter truly digested in the rumen). These changes were paralleled by large linear reductions in omasal flows of essential, nonessential, and total amino acids. Overall, these results indicated that replacing soybean meal RDP with that from urea reduced yield of milk and milk components, largely because of depressed microbial protein formation in the rumen and that RDP from nonprotein-N sources was not as effective as RDP provided by true protein.  相似文献   

15.
Four Holstein cows fitted with ruminal and duodenal cannulas were used in a 4 x 4 Latin square to investigate the effects of source (corn gluten meal or soybean meal) and amount (14.5 or 11.0%) of CP on ruminal fermentation, passage of nutrients to the small intestine, and animal performance. Cows wee fed for ad libitum intake a diet of 60% corn silage and 40% concentrate on a DM basis. The treatments, arranged in a 2 x 2 (source x amount of CP) factorial, were 1) 14.5% CP, soybean meal; 2) 11.0% CP, soybean meal; 3) 14.5% CP, corn gluten meal; and 4) 11.0% CP, corn gluten meal. Digestion in the rumen of OM, starch, ADF, and NDF was not affected by source or amount of CP in the diet. Total VFA and NH3 concentrations in ruminal fluid were increased by feeding diets that contained 14.5% CP or soybean meal. FLows of non-NH3 N and amino acids to the duodenum were greater in cows fed the 14.5% CP diets because of a greater flow of non-NH3 nonmicrobial N to the duodenum. Larger amounts of lysine passed to the duodenum when cows were fed soybean meal compared with corn gluten meal. Microbial N flow to the duodenum and efficiency of microbial growth were not affected by treatments, suggesting that ruminal NH3 concentration was not limiting for maximal microbial protein synthesis. Feeding 14.5% CP diets increased the production of milk (29.5 vs. 26.8 kg/d) and milk protein compared with 11.0% CP diets, possibly because of greater passage of amino acids to the small intestine. Feeding soybean meal to cows increased production of milk protein compared with feeding corn gluten meal, possibly because more lysine passed to the small intestine.  相似文献   

16.
Replacing dietary starch with sugar has been reported to improve production in dairy cows. Two sets of 24 Holstein cows averaging 41 kg/d of milk were fed a covariate diet, blocked by days in milk, and randomly assigned in 2 phases to 4 groups of 6 cows each. Cows were fed experimental diets containing [dry matter (DM) basis]: 39% alfalfa silage, 21% corn silage, 21% rolled high-moisture shelled corn, 9% soybean meal, 2% fat, 1% vitamin-mineral supplement, 7.5% supplemental nonstructural carbohydrate, 16.7% crude protein, and 30% neutral detergent fiber. Nonstructural carbohydrates added to the 4 diets were 1) 7.5% corn starch, 0% sucrose; 2) 5.0% starch, 2.5% sucrose; 3) 2.5% starch, 5.0% sucrose; or 4) 0% starch, 7.5% sucrose. Cows were fed the experimental diets for 8 wk. There were linear increases in DM intake and milk fat content and yield, and linear decreases in ruminal concentrations of ammonia and branched-chain volatile fatty acids, and urinary excretion of urea-N and total N, and urinary urea-N as a proportion of total N, as sucrose replaced corn starch in the diet. Despite these changes, there was no effect of diet on microbial protein formation, estimated from total purine flow at the omasum or purine derivative excretion in the urine, and there were linear decreases in both milk/DM intake and milk N/N-intake when sucrose replaced dietary starch. However, expressing efficiency as fat-corrected milk/DM intake or solids-corrected milk/DM intake indicated that there was no effect of sucrose addition on nutrient utilization. Replacing dietary starch with sucrose increased fat secretion, apparently via increased energy supply because of greater intake. Positive responses normally correlated with improved ruminal N efficiency that were altered by sucrose feeding were not associated with increased protein secretion in this trial.  相似文献   

17.
This study investigated the effects of feeding solvent-extracted canola meal (CM), extruded soybean meal (ESBM), or solvent-extracted soybean meal (SSBM) on an equivalent crude protein basis on performance, plasma AA profiles, enteric gas emissions, milk fatty acids, and nutrient digestibility in lactating dairy cows. Fifteen Holstein cows (95 ± 20 d in milk) were used in a replicated 3 × 3 Latin square design experiment with 3 periods of 28 d each. Treatments were 3 diets containing 17.1% CM, 14.2% ESBM, or 13.6% SSBM (dry matter basis). Vegetable oil was added (canola oil for CM or soybean oil for SSBM) to equalize the ether extract concentration of the diets. Rumen-protected Met was supplemented targeting digestible Met supply of 2.2% of metabolizable protein in all diets. Canola meal increased dry matter intake (DMI) by 5.9 and 8.9% in comparison with ESBM and SSBM, respectively. Milk urea nitrogen was lowest in CM, followed by SSBM, and was highest for ESBM. No differences were observed in feed efficiency, energy-corrected milk yield, and milk composition or component yields among treatments. Cows fed CM emitted less enteric CH4 per kg of DMI compared with both ESBM and SSBM, but CH4 emission intensity (CH4 per kg of energy-corrected milk) was similar among treatments. In summary, replacement of ESBM or SSBM with CM, on an equal crude protein basis, in the diet of lactating dairy cows enhanced DMI, but yields of energy-corrected milk and milk components and feed efficiency were similar among treatments.  相似文献   

18.
Four midlactation, multiparous Holstein cows fitted with ruminal and duodenal cannulas were used in a 4 x 4 Latin square design to determine the effects of supplementing urea or starch or both to diets containing fish meal on passage of nutrients to the small intestine and performance of lactating cows. The treatments (in a 2 x 2 factorial arrangement) were 1) control and control plus 2) urea, 3) starch, or 4) starch and urea. Supplementing diets with urea did not affect DMI; ruminal, postruminal, or total tract digestibilities of DM, starch, ADF, or NDF; ruminal fluid VFA concentrations or molar percentages; or ruminal fluid or particulate dilution rates. Feeding additional starch depressed DMI but did not alter ruminal or postruminal digestion of OM or VFA concentrations and molar percentages in ruminal fluid. Ruminal fluid ammonia concentration was increased by feeding urea and decreased by feeding additional starch. Passage of nonammonia N, nonammonia nonmicrobial N, or microbial N to the small intestine and efficiency of microbial CP synthesis were not affected significantly by supplying either urea or additional starch. Feeding urea increased passage of methionine to the small intestine, whereas feeding additional starch increased passage of methionine and arginine. Passage of other amino acids to the small intestine was not altered significantly by feeding urea or additional starch. Production of milk and milk protein was increased, but yields of fat and SNF were not altered by feeding diets supplemented with urea. Production of milk and milk fat was not affected, but yields of CP and SNF were decreased when additional starch was fed to cows.  相似文献   

19.
Twenty-eight (8 ruminally cannulated) lactating, multiparous Holstein cows were blocked by DIM and randomly assigned to 7 replicated 4 × 4 Latin squares (28-d periods) to investigate the effects of different dietary ratios of alfalfa silage (AS) to corn silage (CS) on production, N utilization, apparent digestibility, and ruminal metabolism. The 4 diets contained (dry matter basis): A) 51% AS, 43% rolled high-moisture shelled corn (HMSC), and 3% solvent soybean meal (SSBM); B) 37% AS, 13% CS, 39% HMSC, and 7% SSBM; C) 24% AS, 27% CS, 35% HMSC, and 12% SSBM; and D) 10% AS, 40% CS, 31% HMSC, and 16% SSBM. Dietary crude protein contents were 17.2, 16.9, 16.6, and 16.2% for diets A, B, C, and D. All 4 diets were high in energy, averaging 49% nonfiber carbohydrates and 24% neutral detergent fiber. Intake of dry matter, yield of milk, 3.5% fat-corrected milk and fat, milk fat content, and apparent digestibility of neutral detergent fiber and acid detergent fiber all decreased linearly when CS replaced AS. Effects on fiber digestion and milk fat may have been due to increasing fluctuation in ruminal pH and time the pH remained <6.0 when CS replaced AS. Milk protein content increased linearly with increasing CS, but there were no differences in protein yield. There were linear increases in apparent N efficiency and decreases in N excreted in urine and feces when CS replaced AS. Production was depressed on the diet highest in CS. Quadratic analysis indicated that milk and protein yields were maximal at dietary AS:CS ratios of, respectively, 37:13 and 31:19. No diet minimized N excretion without negatively affecting production. Diet C, with an AS:CS ratio of 24:27, was the best compromise between improved N efficiency and sustained production. Because CS is complementary with AS, it is recommended that CS be fed in AS-based diets to maintain milk yield while improving N utilization.  相似文献   

20.
One primiparous and 3 multiparous lactating Holstein cows fitted with ruminal and duodenal cannulas were used in a 4 × 4 Latin square design to determine the efficacy of adding urea to a corn silage-based diet on ruminal fermentation and microbial protein synthesis. Dietary treatments were 0, 0.3, 0.6, and 0.9% urea in diet dry matter (DM); urea was manually top dressed and incorporated into the ration. The basal diet contained (DM basis) 52% forage (with 61% of forage provided as corn silage) and 48% concentrate ingredients. The basal diet was formulated to meet National Research Council (NRC, 2001) requirements for energy and all nutrients except rumen-degradable protein (RDP) and metabolizable protein. Experimental periods lasted 14 d with the first 9 d for adaptation. The basal diet, without urea addition, contained 9.2% RDP in DM and had a predicted RDP balance of −167 g/d (NRC, 2001). There were no effects of dietary treatment on ruminal true digestibility of organic matter or ruminal apparent digestibility of neutral detergent fiber and acid detergent fiber. Total ruminal volatile fatty acid concentrations increased linearly with increasing urea level. Feeding increasing amounts of urea quadratically increased rumen ammonia N concentrations (9.0, 11.9, 12.8, and 17.4 mg/dL at 0, 0.3, 0.6, and 0.9% urea supplementation, respectively), passage of microbial N, and microbial N in duodenal digesta as a percentage of nonammonia N. The results of this study indicate that there were some positive effects of adding urea to the described lactating dairy cow diet, and that microbial protein synthesis was maximized at an average ruminal ammonia N concentration of 12.8 mg/dL when urea was added at 0.6% in diet DM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号