首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guar gum (GG) was incorporated into soy protein isolate (SPI) films using a blending solution casting method to form SPI/GG composite films. The effects of SPI and GG contents on the transparency, water susceptibility, mechanical, and gas‐barrier properties of SPI/GG composite films were analyzed. The results showed that SPI/GG composite films with added GG were much more tensile‐resistant, water‐resistant, gas‐barrier properties but less deformable property than SPI control film. The presence of GG also improved film barrier to the light. The analysis results of contact angle measurement, Fourier transform infrared spectroscopy, and scanning electron microscope indicated that GG induced increased network compactness of the composite films which resulted from strong intermolecular interactions, such as hydrogen bonding, that existed between SPI and GG. Findings indicate that GG may be used as a natural means to improve specific properties of SPI films. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43382.  相似文献   

2.
Nanofibrous morphology has been observed in ternary blends of low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and isotactic polypropylene (PP) when these were melt‐extruded via slit die followed by hot stretching. The morphology was dependent on the concentration of the component polymers in ternary blend LDPE/LLDPE/PP. The films were characterized by wide angle X‐ray diffraction (XRD), scanning electron microscopy (SEM), and testing of mechanical properties. The XRD patterns reveal that the β phase of PP is obtained in the as‐stretched nanofibrillar composites, whose concentration decreases with the increase of LLDPE concentration. The presence of PP nanofibrils shows significant nucleation ability for crystallization of LDPE/LLDPE blend. The SEM observations of etched samples show an isotropic blend of LDPE and LLDPE reinforced with more or less randomly distributed and well‐defined nanofibrils of PP, which were generated in situ. The tensile modulus and strength of LDPE/LLDPE/PP blends were significantly enhanced in the machine direction than in the transverse direction with increasing LLDPE concentration. The ultimate elongation increased with increasing LLDPE concentration, and there was a critical LLDPE concentration above which it increased considerably. There was a dramatic increase in the falling dart impact strength for films obtained by blow extrusion of these blends. These impressive mechanical properties of extruded samples can be explained on the basis of the formation of PP nanofibrils with high aspect ratio (at least 10), which imparted reinforcement to the LDPE/LLDPE blend. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
The effect of three types of organoclays on the morphology and mechanical properties of lower critical solution temperature‐type poly(acrylonitrile‐butadiene‐styrene)/poly(methyl methacrylate) (ABS/PMMA) blends was investigated. Polymers were melt‐compounded with 2 and 4 wt % of clays using a twin‐screw extruder. X‐ray scattering and transmission electron microscopy revealed that the intercalation of the nanoclay in the hybrid nanocomposite was more affected by the polarity of the organoclay. Although the morphology of the blends varied by PMMA content, scanning electron microscopy showed smaller PMMA domains for the hybrid systems containing clay particles. Although good dispersion of the nanoclay through the ABS matrix and at the blend interface led to enhancement of tensile strength, the increment of the stiffness was more noticeable for nanocomposites including less polar organoclay. Well‐dispersed clay platelets increased the glass transition temperature. In addition, nanoscratching analysis illustrated an improvement in scratch resistance of ABS because of the presence of PMMA and organoclay. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
The article reports an investigation of the effect of a hydrocarbon resin, Necirés TR100, on the structure, morphology, and properties of two isotactic polypropylene/clay composites. The clays are Dellite HPS, a purified montmorillonite, and Dellite 67G, a purified and modified montmorillonite with a high content of quaternary ammonium salt. Necirés TR100 contains hydroxyl and acid groups, which were expected to interact during the melt mixing with the polar surface of the clays to have intercalation with Dellite HPS and/or exfoliation of Dellite 67G, which is already intercalated by the quaternary ammonium salt. The morphological results indicate that the composite isotactic polypropylene/Dellite HPS presents large and coarse clay domains, whereas the composite isotactic polypropylene/Dellite 67G presents a better distribution of the clay clusters, although the presence of some clay domains of a few μm are also detected. Although results from Wide Angle X‐ray Diffraction have indicated that Necirés TR100 has no effect on the layers distance of Dellite HPS and Dellite 67G its addition produces composites with clay particles homogenously distributed in the polyolefin matrix, better tensile properties (higher values of Young's modululs and elongation to break) and decrease of permeability. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
A series of polyimide (PI)/silica hybrid films were prepared by sol–gel method, using hydrolyzed tetraethoxysilane and poly amic acid‐imides (PAA‐Is), which were different imidization degree controlled by chemical imidization method. The imidization degree was characterized by Fourier transform infrared spectra and their corresponding morphology was characterized by scanning electron microscopy. The results show that there are two kinds of silica particles and their formative morphology obeys the double phase separation mechanism. According to the increase of PAA‐I imidization degree, amount of nano silica particles decreased and the diameter of macro silica particles increased in the hybrid films. Tensile testing, dynamic mechanical analysis, and thermal mechanical analysis results show that, according to the amount of nano silica particles increasing, the hybrids have the higher the mechanical properties, glass transition temperature (Tg), and thermal expansion coefficient. Through controlling PI/silica hybrid films microstructure, its mechanical properties can be controlled. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
The mechanical properties and molecular structure of a poly(vinyl alcohol) (PVA) film, which was obtained by eliminating water from a PVA hydrogel using repeated freeze/thaw cycles, were investigated by tensile tests, thermal analysis, and X‐ray diffraction measurements. The mechanical properties of PVA with 99.9% saponification were measured as a function of the number of freeze/thaw cycles performed. The tensile strength and Young's modulus increased and the elongation at break decreased with increasing freeze/thaw cycles. The tensile strength and Young's modulus of PVA films obtained after seven freeze/thaw cycles were as high as 255 MPa and 13.5 GPa after annealing at 130°C. Thermal analysis and X‐ray diffraction measurements revealed that this is because of a high crystallinity and a large crystallite size. A good relationship between the tensile strength and the glass transition temperature was obtained, regardless of the degree of saponification and annealing conditions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40578.  相似文献   

7.
In this study, high‐temperature vulcanized silicone rubbers (HTV‐SRs) using fumed silica (FSi), precipitated silica (PSi), and modified precipitated silica (MPSi) as reinforcing fillers were prepared. The effect of morphology and surface chemistry of the silica on the thermal and mechanical properties of the resultant silicone rubbers was investigated using curing rheometer, scanning electron microscopy, mechanical test, and dynamic mechanical analysis. The thermo‐oxidative stability and solvent resistance of the vulcanized silicone rubbers were further evaluated via heat ageing test, extraction, and swelling experiments. It is shown that the mechanical properties (tensile modulus and tensile strength) of the as‐prepared HTV‐SRs are in the order of FSi > PSi > MPSi, which could be attributed to the molecular interaction between the filler and the matrix. FSi has the highest surface area, which enhances the hydrogen bonding interaction between the filler and the silicone matrix; while MPSi, in which part of Si? OH groups have been consumed during modification, shows the weakest interaction among the three. The filler–matrix interaction could also explain the lowest swelling and sol fraction in FSi‐filled HTV‐SR, and the low viscosity and good processibility of PSi‐ and MPSi‐filled HTV‐SR. Furthermore, it is also shown that the MPSi‐filled HTV‐SR exhibits the highest retention of mechanical properties after thermal aging at 250 °C for 24 h, which could be attributed to the lowest acidity of the fillers. The possible mechanism for acid catalyzed hydrolytic chain scission and intramolecular chain backbiting has been proposed. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46646.  相似文献   

8.
PMMA/SiO_2纳米复合膜表面性能的研究   总被引:1,自引:0,他引:1  
采用有机硅处理剂对纳米SiO2进行化学修饰,得到表面官能团化的纳米SiO2,然后再通过溶液聚合法制备了聚甲基丙烯酸甲酯/二氧化硅(PMMA/SiO2)纳米复合膜.利用傅里叶红外光谱仪(FT-IR)、扫描电镜(SEM)、原子力显微镜(AFM)、水接触角仪(WCA)对其进行表征.结果表明,经有机硅处理剂官能团化的纳米SiO2能很好地分散于PMMA基体中,SiO2有富集到聚甲基丙烯酸甲酯表面的趋势,加入纳米SiO2降低了聚甲基丙烯酸甲酯表面自由能,提高了膜表面的水接触角.经四氢呋喃溶剂刻蚀后,膜表面的水接触角显著提高,得到憎水型PMMA/SiO2纳米复合膜.  相似文献   

9.
Nylon 12 (PA12) nanocomposites with different organoclay loadings were successfully prepared by melt compounding. X‐ray diffraction indicated the dominance of the exfoliated clay morphology throughout the matrix after mixing in a Brabender twin‐screw extruder, in accordance with transmission electron microscopy observations. Thermogravimetric analysis showed that the thermal stability of the PA12 matrix was improved by about 20 °C on incorporation of only 5 wt% clay. Tensile and nanoindentation tests indicated that the elastic modulus and the hardness steadily increased by about 52 % and 67 %, respectively, with a clay concentration up to 5 wt%, while improvements in tensile strength were limited. Impact strength decreased linearly by about 25 % as the clay loading increased (up to 5 wt%), indicating an embrittlement due to clay addition, as evidenced by SEM observation on the fracture surfaces. The embrittling effect may be due to the weak interfacial adhesion between the clay platelets and the polymer matrix. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
We investigated the effect of reactive blending on the mechanical properties and morphology of high‐density polyethylene (HDPE)/plasticized starch blends. HDPE was chemically modified to enhance the compatibility with the plasticized starch. The modified HDPE, HDPE‐g‐glycidyl methacrylate (GMA), was synthesized by melt reaction of HDPE in the presence of dicumyl peroxide (DCP). A finer dispersion of starch in the HDPE matrix was achieved compared to that in the unmodified HDPE. The amount of GMA groups in the modified HDPE enhanced the miscibility of HDPE/starch blends. We also observed that the amount of glycerin improves the mechanical properties of blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3313–3320, 2001  相似文献   

11.
In this article, polyamide 6 (PA6), maleic anhydride grafted ethylene‐propylene‐diene monomer (EPDM‐g‐MA), high‐density polyethylene (HDPE) were simultaneously added into an internal mixer to melt‐mixing for different periods. The relationship between morphology and rheological behaviors, crystallization, mechanical properties of PA6/EPDM‐g‐MA/HDPE blends were studied. The phase morphology observation revealed that PA6/EPDM‐g‐MA/HDPE (70/15/15 wt %) blend is constituted from PA6 matrix in which is dispersed core‐shell droplets of HDPE core encapsulated by EPDM‐g‐MA phase and indicated that the mixing time played a crucial role on the evolution of the core‐shell morphology. Rheological measurement manifested that the complex viscosity and storage modulus of ternary blends were notable higher than the pure polymer blends and binary blends which ascribed different phase morphology. Moreover, the maximum notched impact strength of PA6/EPDM‐g‐MA/HDPE blend was 80.7 KJ/m2 and this value was 10–11 times higher than that of pure PA6. Particularly, differential scanning calorimetry results indicated that the bulk crystallization temperature of HDPE (114.6°C) was partly weakened and a new crystallization peak appeared at a lower temperature of around 102.2°C as a result of co‐crystal of HDPE and EPDM‐g‐MA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
Nanocomposites based on polycarbonate (PC) and different amounts of untreated graphene nanoplatelets (GnP) (from 1 to 7 wt %) were prepared by melt blending. The nanocomposites were thoroughly characterized employing the following techniques: broad band dielectric spectroscopy, thermally stimulated depolarization currents, differential scanning calorimetry, tensile testing, dynamic mechanical thermal analysis, and water vapor, carbon dioxide and oxygen permeability measurements. The presence of a MWS relaxation mode indicated the accumulation of electrical charges trapped at the interfaces of the polycarbonate with graphene 2D platelets. The addition of GnP produced nanocomposite materials with enhanced mechanical and barrier properties. The melt mixed PC/graphene nanocomposites prepared here exhibit well‐balanced properties, even though unmodified graphene nanoplatelets were used. In addition, the nanocomposites were obtained by a single extrusion process, which is easily scalable for industrial applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44654.  相似文献   

13.
聚乙二醇改性淀粉/聚乳酸薄膜的结构与性质研究   总被引:9,自引:0,他引:9  
将热塑性淀粉(TPS)与聚乙二醇(PEG)、聚乳酸(PLA)共混后,采用溶剂蒸发法制备出完全生物降解的聚乙二醇改性淀粉/聚乳酸薄膜(SPLA)。研究了SPLA膜的力学性能、耐水性,并对薄膜的结构进行了研究,结果表明聚乳酸可以明显改善淀粉基薄膜的耐水性与力学强度;当w(PLA)≤20%时,共混物各组分间有较好的相容性。SPLA膜的玻璃化转变温度低于淀粉和聚乳酸,XRD显示共混膜中淀粉和聚乳酸的颗粒结晶结构均受到破坏。  相似文献   

14.
Polypropylene/polyamide 6 blends and their nanocomposites with layered silicates or talc were prepared in a melt‐compounding process to explore their mechanical performance. The thermomechanical behavior, crystallization effects, rheology, and morphology of these materials were studied with a wide range of experimental techniques. In all cases, the inorganic filler was enriched in the polyamide phase and resulted in a phase coarsening of the polypropylene/polyamide nanocomposite in comparison with the nonfilled polypropylene/polyamide blend. The mechanical properties of these nanoblends were consequently only slightly better than those of the pure polymers with respect to the modulus, whereas the impact level was below that of the pure polymers, reflecting the heterogeneity of the nanoblend. Polymer‐specific organic modification of the nanoclays did not result in a better phase distribution, which would be required for better overall performance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 283–291, 2006  相似文献   

15.
The aim of this study was to investigate the effect of nanoclay addition on the morphological and mechanical properties of PA6/SAN/SEBS ternary blend. Two different nanoclays with different modifiers and two different mixing sequences were used to investigate the role of thermodynamic and kinetic, respectively, in the nanoclays localization. XRD, SEM, TEM, melt rheology, tensile and Izod impact tests were used to characterize the nanocomposites. Results of characterization of nanocomposites showed that clay localization is a very influential parameter to determine the type of morphology and, consequently, mechanical properties of ternary/clay nanocomposites. It was demonstrated that presence of nanoclay in the matrix results in the increase of stiffness, while localization of nanoclay at the interface improves the toughness and tensile strength. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41969.  相似文献   

16.
Polydimethylsiloxane/polystyrene (PDMS/PS) blends were prepared by radical copolymerization of styrene (St) and divinylbenzene (DVB) in the presence of α,ω‐dihydroxy‐polydimethylsiloxane (PDMS), using benzoyl peroxide as initiator. The PDMS/PS blends obtained by this method are a series of stable, white gums, when the feed ratio of PDMS to St is 60/40 and DVB to St is not more than 2.0 wt %. Elastomers based on PDMS/PS blends were formed by crosslinking PDMS with methyl‐triethoxysilicane (MTES). The MTES dosage was much larger than the amount necessary for end‐linking hydroxy‐terminated chains of PDMS, with the excess being hydrolyzed to crosslinked networks, which were similar to SiO2 and acted as filler. Mechanical property measurements show that the elastomers thus formed exhibit superior mechanical properties with respect to pure PDMS elastomer and the elastomers based on PDMS/PS system we prepared before. Moreover, investigations were carried out on the elastomers by extraction measurement and scanning electron microscopy (SEM). The extraction data show that the sol‐fraction decreases with increasing the feed ratio of DVB to St. SEM observation demonstrates that the elastomer has a microphase‐separated structure consisting of dispersed PS domains within a continuous PDMS matrix, and the extracted material exhibits a porous structure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Coagents are vinyl monomers that react with free radicals formed by peroxide dissociation and are either grafted to elastomer chains or homopolymerized within a segregated phase to form a crosslinked network. The initial phase distribution within the elastomer matrix is of great importance for the final user properties of a composite material. In this study, the morphology of blends of each of three different coagents, that is, zinc dimethacrylate (ZDMA), N,N′‐m‐phenylene dimaleimide (HVA‐2), and trimethylolpropane trimethacrylate (TMPTMA) on a reinforcing substrate with dicumyl peroxide and hydrogenated acrylonitrile butadiene elastomer after processing was investigated with scanning electron microscopy. The morphology that evolved during processing was then compared to the results obtained from dynamic mechanical analysis (DMA) of the blends. Dynamic mechanical properties were modeled with a continuous relaxation distribution function, the Williams–Landel–Ferry equation, and the modified Guth–Gold equation. In the case of ZDMA and TMPTMA, a microphase and a nanophase evolved during processing, whereas the HVA‐2 phase in the blends remained well segregated. The volume fraction of the particles under 100 nm in ZDMA and TMPTMA blends ranged from 79 to 89%. The DMA results revealed the reinforcing effect of ZDMA and TMPTMA during the glass‐transition and in the plateau region, whereas HVA‐2 exhibited plasticizer‐like behavior. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
The application of graphene (Gr) to enhance atomic oxygen (AO) erosion resistance and mechanical properties was demonstrated in this study. Gr‐reinforced cellulose acetate (CA) composite films were obtained by flattening with a glass rod, and the AO erosion resistance was investigated in a plasma‐type, ground‐based AO effect simulation facility. Significant improvements in the mechanical properties and AO erosion resistance were achieved at relatively low Gr contents. A 59 ± 7% decrease in the mass loss and a 12 ± 3% increase in the tensile strength were achieved by the addition of only 1 wt % Gr. Moreover, the layered structure of the fractured surfaces and the excellent mechanical properties illustrated the homogeneous dispersion of Gr in the CA matrix and the strong interactions between Gr and CA. Furthermore, Gr flakes served as shields to defend the underside of CA from AO erosion because of the specific two‐dimensional structure and outstanding AO erosion resistance. Therefore, this research provides a new and effective strategy for improving the mechanical strength and AO erosion resistance of polymer materials. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40292.  相似文献   

19.
In this work well uniform dispersion of single-walled carbon nanotubes (SWNTs) in isotactic polypropylene (iPP) was achieved by shear mixing. The results obtained from the differential scanning calorimetry curves indicate that the addition of low SWNT amounts (less than 1 wt%) led to an increase in the rate of polymer crystallization with no substantial changes in the crystalline structure, as confirmed by X-ray diffraction. The tensile mechanical properties showed that Young’s modulus and tensile strength considerably increase in the presence of nanotubes, with a maximum for 0.75 wt%. The reinforcing effect of SWNTs was also confirmed by dynamic mechanical analysis where, by adding nanotubes, a noticeable increase in the storage modulus was detected. The beneficial effects of SWNT incorporation was underlined comparing the results obtained with those of carbon black used as a filler.  相似文献   

20.
This paper is to study the effect of basalt fiber on morphology, melting and crystallization, structure, mechanical properties, melting and crystallization of PVDF/PMMA composites using scanning electron microscopy (SEM), X‐ray, differential scanning calorimeter (DSC), dynamical mechanical analysis (DMA), etc. Basalt fiber may disperse well in PVDF/PMMA matrix and form compact fiber network, and this makes tensile and flexural strength of fiber reinforced PVDF/PMMA composites get to the maximum value of 62 and 102 MPa, respectively. However, the mechanical properties begin to decrease when basalt fiber content exceeds 20 wt %. The α and β phase of PVDF can coexist in composites, and basalt fiber and PMMA can induce β phase of PVDF. The melting temperature of PVDF in composites is kept unchanged, but the degree of crystallinity of composites increases as basalt fiber content increase, and then declines when fiber content exceeds 20%. The DSC results confirm that the nucleation ability of PVDF is enhanced by basalt fiber. Also, the heat resistance of PVDF/PMMA composite is improved from 133 to 146.1°C due to basalt fiber. The DMA shows that basalt fiber increases the storage modulus of PVDF/PMMA composite, and the loss peak of PMMA increases from 116.1 to 130°C. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40494.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号