首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low generation amino‐group‐terminated poly(ester‐amine) dendrimers PEA1.0 (NH2)3 and PEA1.5 (NH2)8, and poly(amido‐amine) dendrimer PAMAM1.0 (NH2)4 were used as diglycidyl ether of bisphenol A (DGEBA) epoxy resin hardeners. Thermal behavior and curing kinetics of dendrimer/DGEBA systems were investigated by means of differential scanning calorimetry (DSC). Compared with ethylene diamine (EDA)/DGEBA system, the dendrimer/DGEBA systems gradually liberated heat in two stages during the curing process, and the total heat liberated was less. Apparent activation energy and curing reaction rate constants for dendrimer and EDA/DGEBA systems were estimated. Thermal stabilities and mechanical properties of cured thermosetting systems were examined as well. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3902–3906, 2006  相似文献   

2.
The influences of different gravity environments on the curing process and the cured products of carbon‐nanotube‐reinforced epoxy composites were investigated in this study. Different gravity environments were simulated with a superconducting magnet on the basis of which resin matrix composites with different amino‐functionalized multiwalled carbon nanotube (NH2‐MWCNT) concentrations of 0.1, 0.3, 0.5, and 1 wt % were tested. Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, thermomechanical analysis (TMA), thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, and three‐point bending tests were used to analyze the characteristics of different curing processes and cured products. From the results, we observed that the curing rate of the epoxy composites was influenced by different gravity values, and there was anisotropy in the NH2‐MWCNT‐reinforced epoxy composites cured in the simulated microgravity environment. More effects of gravity on the curing process and cured products could be obtained through detailed experiments and discussion; this is important and fundamental for improving and enhancing the properties of composite materials used in different gravity environments. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41413.  相似文献   

3.
Epoxy resin–silica nanocomposites with spherical silica domains with 29.0 nm in diameter in an epoxy resin matrix were synthesized from Bisphenol‐A type epoxide monomer, 2,2‐bis(4‐glycidyloxyphenyl)propane (DGEBA), and perhydropolysilazane (PHPS, ? [Si2? NH]n? ). The volume fraction of silica domain in the composite varied from 5.4 to 37.8 vol % by varying the feed ratio of PHPS to the epoxide monomer. The reaction mechanism of epoxy group and PHPS was investigated by using glycidyl methacrylate as a model compound of the epoxy monomer by 1H‐nucular magnetic resonance and Fourier transform infrared spectrometry. Ammonia gas provided by the decomposition of PHPS with moisture converted PHPS to silica and cured the epoxy monomer. The curing of epoxy monomer preferably proceeded than the conversion of silica. The addition of 1,4‐diaminobutane drastically accelerated the rate of curing; white and hard epoxy resin–silica nanocomposites were obtained. The good thermal stability of the composite prepared with DGEBA/PHPS/1,4‐diaminobutane was observed by thermogravimetric analysis. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
Diglycidyl ether of bisphenol A (DGEBA) and diglycidyl ether of bisphenol F (DGEBF) reinforced with organo‐montmorillonite clay nanoplatelets were investigated using anhydride‐ and amine‐curing agents. The sonication technique was used to process epoxy/clay nanocomposites. The basal spacing of clay nanoplatelets was observed by wide‐angle X‐ray scattering (WAXS), small‐angle X‐ray scattering (SAXS) techniques, and transmission electron microscopy. It was found that the basal spacing of clay nanoplatelets in epoxy matrix was expanded after mixing with either DGEBA/DGEBF or methyltetrahydrophthalic‐anhydride (MTHPA) curing agent. The sonication technique provided larger d‐spacing of clay nanoplatelets. Because of the different curing temperatures, MTHPA‐cured epoxy/clay nanocomposites produced more expanded d‐spacing of clay nanoplatelets modified with methyl, tallow, bis(2‐hydroxyethyl) quaternary ammonium (MT2EtOH) than triethylenetetramine‐cured nanocomposites. Depending on the selection of curing agent and organic modification for clay nanoplatelets, the d‐spacing was expanded to be up to 8.72 nm. POLYM. ENG. SCI., 46:452–463, 2006. © 2006 Society of Plastics Engineers  相似文献   

5.
A novel method is used for preparing liquid rubber‐toughened epoxy blend, in which an initiator was added to the liquid rubber–epoxy mixture to initiate crosslinking reaction of liquid rubber, and then curing agent was added to form the thermoset. Two epoxy blends with carboxyl‐terminated butadiene‐acrylonitrile copolymers were prepared using traditional and novel methods respectively. Results indicated that the novel rubber‐toughened epoxy blend exhibited much better mechanical properties than its traditional counterpart. The morphologies of the blends were explored by transmission electron microscopy (TEM), it was revealed that the use of the novel method formed a local interpenetrating network structure in the blend, which substantially improved the interfacial adhesion. The impact fracture surfaces of the two blends were observed by scanning electron microscopy (SEM) to explore the toughening mechanism, it was found that crack pinning was the major toughening mechanism for the novel rubber‐toughened epoxy blend. Dynamic mechanical analysis (DMA) was applied to determine the Tg values of the blends, which were found to be close. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41110.  相似文献   

6.
A series of epoxy‐bridged polyorganosiloxanes have been synthesized by reacting multifunctional aminoalkoxysilanes with diglycidyl ether of bisphenol A (DGEBA) epoxy resin. The reactions of trifunctional 3‐aminopropyltriethoxysilane (APTES), difunctional 3‐aminopropylmethyldiethoxysilane (APMDS), and monofunctional 3‐aminopropyldimethylethoxysilane (APDES) with DGEBA epoxy have been monitored and characterized by FTIR, 1H NMR, and 29Si NMR spectra in this study. The synthesized epoxy‐bridged polyorganosiloxanes precursors, with different terminated alkoxysilane groups, are thermally cured with or without the addition of curing catalysts. Organometallic dibutyltindilaurate, and alkaline tetrabutylammonium hydroxide have been used as curing catalysts to investigate the thermal curing behaviors and cured properties of epoxy‐bridged polyorganosiloxanes precursors. The maximum exothermal curing temperatures of epoxy‐bridged polyorganosiloxanes precursors are found to appear around the same region of 120°C in DSC analysis. The addition of catalysts to the epoxy/APTES precursor shows significant influence on the cured structure; however, the catalysts exhibit less influence on the cured structure of epoxy‐APMDS precursor and epoxy/APDES precursor. Curing catalysts also show significant enhancement in increasing the thermal decomposition temperature (Td50s) of cured network of trifunctional epoxy‐bridged polyorganosiloxane (epoxy/APTES). High Td50s of 518.8 and 613.6 in the cured hybrids of epoxy/APTES and epoxy/APMDS precursors are also observed, respectively. When trialkoxysilane‐terminated epoxy‐bridged polyorganosiloxanes precursor are cured, with or without the addition of catalyst, no obvious Tg transition can be found in the TMA analysis of cured network. The cured network of trialkoxysilane‐terminated epoxy‐bridged polyorganosiloxanes also exhibits the lowest coefficient of thermal expansion (CTE) among the three kinds of alkoxysilane‐terminated epoxy‐bridged polyorganosiloxanes investigated. The organic–inorganic hybrid, from epoxy‐bridged polyorganosiloxanes after the thermal curing process, shows better thermal stability than the cured resin network of pure epoxy‐diaminopropane. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3491–3499, 2006  相似文献   

7.
Amine‐terminated poly(arylene ether sulfone)–carboxylic‐terminated butadiene‐acrylonitrile–poly(arylene ether sulfone) (PES‐CTBN‐PES) triblock copolymers with controlled molecular weights of 15,000 (15K) or 20,000 (20K) g/mol were synthesized from amine‐terminated PES oligomer and commercial CTBN rubber (CTBN 1300x13). The copolymers were utilized to modify a diglycidyl ether of bisphenol A epoxy resin by varying the loading from 5 to 40 wt %. The epoxy resins were cured with 4,4′‐diaminodiphenylsulfone and subjected to tests for thermal properties, plane strain fracture toughness (KIC), flexural properties, and solvent resistance measurements. The fracture surfaces were analyzed with SEM to elucidate the toughening mechanism. The properties of copolymer‐toughened epoxy resins were compared to those of samples modified by PES/CTBN blends, PES oligomer, or CTBN. The PES‐CTBN‐PES copolymer (20K) showed a KIC of 2.33 MPa m0.5 at 40 wt % loading while maintaining good flexural properties and chemical resistance. However, the epoxy resin modified with a CTBN/8K PES blend (2:1) exhibited lower KIC (1.82 MPa m0.5), lower flexural properties, and poorer thermal properties and solvent resistance compared to the 20K PES‐CTBN‐PES copolymer‐toughened samples. The high fracture toughness with the PES‐CTBN‐PES copolymer is believed to be due to the ductile fracture of the continuous PES‐rich phases, as well as the cavitation of the rubber‐rich phases. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1556–1565, 2002; DOI 10.1002/app.10390  相似文献   

8.
9.
This study has evaluated three low‐viscosity epoxy additives as potential tougheners for two epoxy resin systems. The systems used were a lower‐reactive resin based upon the diglycidyl ether of bisphenol A (DGEBA) and the amine hardener diethyltoluene diamine, while the second epoxy resin was based upon tetraglycidyl methylene dianiline (TGDDM) and a cycloaliphatic diamine hardener. The additives evaluated as potential tougheners were an epoxy‐terminated aliphatic polyester hyperbranched polymer, a carboxy‐terminated butadiene rubber and an aminopropyl‐terminated siloxane. This work has shown that epoxy‐terminated hyperbranched polyesters can be used effectively to toughen the lower cross‐linked epoxy resins, i.e. the DGEBA‐based systems, with the main advantage being that they have minimal effect upon processing parameters such as viscosity and the gel time, while improving the fracture properties by about 54 % at a level of 15 wt% of additive and little effect upon the Tg. This result was attributed to the phase‐separation process producing a multi‐phase particulate morphology able to initiate particle cavitation with little residual epoxy resin dissolved in the continuous epoxy matrix remaining after cure. The rubber additive was found to impart similar levels of toughness improvement but was achieved with a 10–20 °C decrease in the Tg and a 30 % increase in initial viscosity. The siloxane additive was found not to improve toughness at all for the DGEBA‐based resin system due to the poor dispersion within the epoxy matrix. The TGDDM‐based resin systems were found not to be toughened by any of the additives due to the lack of plastic deformation of the highly cross‐linked epoxy network Copyright © 2003 Society of Chemical Industry  相似文献   

10.
The poly(sily ether) with pendant chloromethyl groups (PSE) was synthesized by the polyaddition of dichloromethylsilane (DCM) and diglycidylether of bisphenol A (DGEBA) with tetrabutylammonium chloride (TBAC) as a catalyst. This polymer was miscible with diglycidyl ether of bisphenol A (DGEBA), the precursor of epoxy resin. The miscibility is considered to be due mainly to entropy contribution because the molecular weight of DGEBA is quite low. The blends of epoxy resin with PSE were prepared through in situ curing reaction of diglycidyl ether of bisphenol A (DGEBA) and 4,4′‐diaminodiphenylmethane (DDM) in the presence of PSE. The DDM‐cured epoxy resin/PSE blends with PSE content up to 40 wt % were obtained. The reaction started from the initial homogeneous ternary mixture of DGEBA/DDM/PSE. With curing proceeding, phase separation induced by polymerization occurred. PSE was immiscible with the 4,4′‐diaminodiphenylmethane‐cured epoxy resin (ER) because the blends exhibited two separate glass transition temperatures (Tgs) as revealed by the means of differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). SEM showed that all the ER/PSE blends are heterogeneous. Depending on blend composition, the blends can display PSE‐ or epoxy‐dispersed morphologies, respectively. The mechanical test showed that the DDM‐cured ER/PSE blend containing 25 wt % PSE displayed a substantial improvement in Izod impact strength, i.e., epoxy resin was significantly toughened. The improvement in impact toughness corresponded to the formation of PSE‐dispersed phase structure. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 505–512, 2003  相似文献   

11.
An intercrosslinked network of unsaturated polyester–bismaleimide modified epoxy matrix systems was developed. Epoxy systems modified with 10, 20, and 30% (by weight) of unsaturated polyester were made by using epoxy resin and unsaturated polyester with benzoyl peroxide and diaminodiphenylmethane as curing agents. The reaction between unsaturated polyester and epoxy resin was confirmed by IR spectral studies. The unsaturated polyester toughened epoxy systems were further modified with 5, 10, and 15% (by weightt) of bismaleimide (BMI). The matrices, in the form of castings, were characterized for their mechanical properties. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) of the matrix samples were performed to determine the glass transition temperature (Tg) and thermal degradation temperature of the systems, respectively. Mechanical properties, viz: tensile strength, flexural strength, and plain strain fracture toughness of intercrosslinked epoxy systems, were studied by ASTM methods. Data obtained from mechanical and thermal studies indicated that the introduction of unsaturated polyester into epoxy resin improves toughness but with a reduction in glass transition, whereas the incorporation of bismaleimide into epoxy resin improved both mechanical strength and thermal behavior of epoxy resin. The introduction of bismaleimide into unsaturated polyester‐modified epoxy resin altered thermomechanical properties according to their percentage concentration. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2853–2861, 2002  相似文献   

12.
The effect of polyether polyol and amino‐functionalized multiwalled carbon nanotubes (NH2‐MWCNTs) on the thermal stability of three‐phase (epoxy/polyol/NH2‐MWCNTs) epoxy composites was investigated. Thermal stability and degradation characteristics of polyol/MWCNTs modified epoxy composites was evaluated using thermogravimetric analysis. The kinetics of thermal degradation was assessed from data scanned at 5, 10, and 20°C/min. Activation energy for degradation of epoxy nanocomposites was calculated using different differential and integral methods, that is, Kissinger's, Flynn–Wall–Ozawa, Coats–Redfern, and Horowitz–Metzger methods. In addition, the integral procedure decomposition temperature was determined to evaluate the inherent thermal stability of the modified composite system. Rate of thermal degradation in MWCNT/Polyol samples was found to be reduced significantly while activation energy of degradation was increased compared to unmodified epoxy composite. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41558.  相似文献   

13.
Hybrid fillers of mono‐amine polyhedral oligomeric silsesquioxane/nanosized boron nitride (NH2‐POSS/n‐BN) were performed to fabricate NH2‐POSS/n‐BN/epoxy nanocomposites. Results revealed that the dielectric constant and dielectric loss values were decreased with the increasing addition of NH2‐POSS obviously, but increased with the increasing addition of BN fillers. For a given loading of NH2‐POSS (5 wt %), the thermal conductivities of NH2‐POSS/n‐BN/epoxy nanocomposites were improved with the increasing addition of n‐BN fillers, and the thermal conductivity of the nanocomposites was 1.28 W/mK with 20 wt % n‐BN fillers. Meantime, the thermal stability of the NH2‐POSS/n‐BN/epoxy nanocomposites was also increased with the increasing addition of n‐BN fillers. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41951.  相似文献   

14.
Our previous studies showed that herringbone graphitic GNFs surface‐derivatized with reactive linker molecules bearing pendant primary amino functional groups capable of binding covalently to epoxy resins. Of special importance, herringbone GNFs derivatized with 3,4′‐oxydianiline (GNF‐ODA) were found to react with neat butyl glycidyl ether to form mono‐, di‐, tri‐, and tetra‐glycidyl oligomers covalently coupled to the ODA pendant amino group. The resulting reactive GNF‐ODA (butyl glycidyl)n nanofibers, r‐GNF‐ODA, are especially well suited for reactive, covalent incorporation into epoxy resins during thermal curing. Based on these studies, nanocomposites reinforced by the r‐GNF‐ODA nanofibers at nanofiber loadings of 0.15–1.3 wt% were prepared. Flexural property of cured r‐GNF‐ODA/epoxy nanocomposites were measured through three‐point‐bending tests. Thermal properties, including glass transition temperature (Tg) and coefficient of thermal expansion (CTE) for the nanocomposites, were investigated using thermal mechanical analysis. The nanocomposites containing 0.3 wt% of the nanofibers gives the highest mechanical properties. At this 0.3‐wt% fiber loading, the flexural strength, modulus and breaking strain of the particular nanocomposite are increased by about 26, 20, and 30%, respectively, compared to that of pure epoxy matrix. Moreover, the Tg value is the highest for this nanocomposite, 14°C higher than that of pure epoxy. The almost constant change in CTEs before and after Tg, and very close to the change of pure epoxy, is in agreement with our previous study results on a chemical bond existing between the r‐GNF‐ODA nanofibers and epoxy resin in the resulting nanocomposites. POLYM. COMPOS., 28:605–611, 2007. © 2007 Society of Plastics Engineers  相似文献   

15.
BACKGROUND: Both exfoliated and toughened polypropylene‐blend‐montmorillonite (PP/MMT) nanocomposites were prepared by melt extrusion in a twin‐screw extruder. Special attention was paid to the enhancement of clay exfoliation and toughness properties of PP by the introduction of a rubber in the form of compatibilizer toughener: ethylene propylene diene‐based rubber grafted with maleic anhydride (EPDM‐g‐MA). RESULTS: The resultant nanocomposites were characterized using X‐ray diffraction, atomic force microscopy, scanning electron microscopy, thermogravimetric analysis, dynamic mechanical analysis and Izod impact testing methods. It was found that the desired exfoliated nanocomposite structure could be achieved for all compatibilizer to organoclay ratios as well as clay loadings. Moreover, a mechanism involving a decreased size of rubber domains surrounded with nanolayers as well as exfoliation of the nanolayers in the PP matrix was found to be responsible for a dramatic increase in impact resistance of the nanocomposites. CONCLUSION: Improved thermal and dynamic mechanical properties of the resultant nanocomposites promise to open the way for highly toughened super PPs via nanocomposite assemblies even with very low degrees of loading. Copyright © 2008 Society of Chemical Industry  相似文献   

16.
The curing reaction kinetics of an epoxy based on the diglycidyl ether of bisphenol A (DGEBA) with an inorganic complex based on nickel(II) chelate with ethylenediamine (en) as a ligand were studied using DSC in dynamic mode. The complex curing agent was synthesized and characterized by the elemental analysis, FT‐IR, and ICP‐Plasma techniques. Thermal dissociation behavior of curing agent was also studied using thermogravimetric (TG) analysis in isolated form. Three kinetic models, Kissinger, Ozawa‐Flynn‐Wall, and Expanded Freeman‐Carrole, were used to determine the kinetic parameters. The effect of hardener concentration on the kinetic parameters and the shape of DSC thermograms of the DGEBA/Ni(en)3Br2 system were investigated. Finally, the previous proposed mechanism by another researcher was used to explain the DSC data in detail. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 265–271, 2005  相似文献   

17.
This study examined the dynamic mechanical properties of sisal fiber reinforced unsaturated polyester (UP) toughened epoxy nanocomposites. The chemical structures changes in Epoxy, UP and UP toughened epoxy (Epoxy/UP) systems were characterized by Proton Nuclear magnetic resonance (1HNMR) spectroscopy. The morphological alterations of the nanocomposites were analyzed by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The untreated, chemically treated fibers, nanoclays, and the fiber reinforced Epoxy/UP nanocomposites were confirmed by FTIR spectrometer. The obtained mechanical results showed that alkali‐silane treated fibers improve the tensile strength (96%) and flexural strength (60%) of the Epoxy/UP nanocomposite than that of Epoxy/UP blend due to the strong interfacial bonding between the sisal fiber and matrix. The fracture toughness (KIC) and fracture energy (GIC) of treated sisal fiber reinforced DGEBA/UP/C30B nanocomposites found to be higher than that of untreated sisal fiber nanocomposites. The dynamic mechanical analysis (DMA) reveals that the fiber reinforced Epoxy/UP nanocomposites contains 30 wt% treated fiber and 1 wt% nanoclays, exhibits the highest storage modulus and better glass transition temperature (Tg) among the other kind of systems. The surface morphology of the fibers, fractured surface of the resins and composites were confirmed by scanning electron microscope (SEM). POLYM. COMPOS., 37:2832–2846, 2016. © 2015 Society of Plastics Engineers  相似文献   

18.
Mixtures of diglycidyl ether of bisphenol‐A (DGEBA) epoxy resin with poly(4‐vinyl phenol) (PVPh) of various compositions were examined with a differential scanning calorimeter (DSC), using the curing agent 4,4′‐diaminodiphenylsulfone (DDS). The phase morphology of the cured epoxy blends and their curing mechanisms depended on the reactive additive, PVPh. Cured epoxy/PVPh blends exhibited network homogeneity based on a single glass transition temperature (Tg) over the whole composition range. Additionally, the morphology of these cured PVPh/epoxy blends exhibited a homogeneous network when observed by optical microscopy. Furthermore, the DDS‐cure of the epoxy blends with PVPh exhibited an autocatalytic mechanism. This was similar to the neat epoxy system, but the reaction rate of the epoxy/polymer blends exceeded that of neat epoxy. These results are mainly attributable to the chemical reactions between the epoxy and PVPh, and the regular reactions between DDS and epoxy. Polym. Eng. Sci. 45:1–10, 2005. © 2004 Society of Plastics Engineers.  相似文献   

19.
An epoxy matrix system modified by diglycidylether‐terminated polydimethylsiloxane (DGETPDMS) and bismaleimide (BMI) was developed. Epoxy systems modified with 4, 8, and 12% (by wt) of DGETPDMS were made using epoxy resin and DGETPDMS, with diaminodiphenylmethane as the curing agent. The DGETPDMS‐toughened epoxy systems were further modified with 4, 8, and 12% (by wt) of BMI, namely (N,N′‐bismaleimido‐4,4′‐diphenylmethane). DGETPDMS/BMI/epoxy matrices were characterized using differential scanning calorimetry, thermogravimetric analysis, and heat deflection temperature analysis. The matrices, in the form of castings, were characterized for their mechanical properties, viz. tensile strength, flexural strength, and impact test, as per ASTM methods. Mechanical studies indicate that the introduction of DGETPDMS into epoxy resin improves the impact strength, with reduction in tensile strength, flexural strength, and glass transition temperature, whereas the incorporation of BMI into epoxy resin enhances the mechanical and thermal properties according to its percentage content. However, the introduction of both DGETPDMS and BMI enhances the values of thermomechanical properties according to their percentage content. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 668–674, 2006  相似文献   

20.
In this study, the multi-walled carbon nanotubes (MWNT) were reinforced to epoxy resin as fabrication of epoxy/MWNT nanocomposites by electron beam (e-beam) curing. An attempt is made to disperse MWNT into diglycidyl ether of bisphenol A (DGEBA) as epoxy resins, using triarylsulfonium hexafluoroantimonate (TASHFA) as an initiator. E-beam irradiation effect on the curing of the epoxy resin was investigated in oxygen and nitrogen atmospheres at room temperature. The flexural modulus was measured by a universal testing machine (UTM). Here, the flexural modulus factor exhibits an upper limit at 0.3 wt% MWNT. The dynamic mechanical and thermal properties of the irradiated epoxy resins were characterized using DMA, DSC and TGA machines. DMA curves of the storage modulus revealed an increase with an increasing MWNT content and radiation dose. However, the Tg curve decreased as a function of the increasing MWNT content and radiation dose. The thermal properties of the TGA and DSC data were improved by increasing the content of the MWNT and the radiation dose. Likewise, the thermal properties were stabilized by increasing the amount of initiator and irradiating the resins in a nitrogen atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号