首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When a fatigue crack is nucleated and propagates into the vicinity of the notch, the crack growth rate is generally higher than that can be expected by using the stress intensity factor concept. The current study attempted to describe the crack growth at notches quantitatively with a detailed consideration of the cyclic plasticity of the material. An elastic–plastic finite element analysis was conducted to obtain the stress and strain histories of the notched component. A single multiaxial fatigue criterion was used to determine the crack initiation from the notch and the subsequent crack growth. Round compact specimens made of 1070 steel were subjected to Mode I cyclic loading with different R-ratios at room temperature. The approach developed was able to quantitatively capture the crack growth behavior near the notch. When the R-ratio was positive, the crack growth near a notch was mainly influenced by the plasticity created by the notch and the resulted fatigue damage during crack initiation. When the R-ratio was negative, the contact of the cracked surfaces during a part of a loading cycle reduced the cyclic plasticity of the material near the crack tip. The combined effect of notch plasticity and possible contact of cracked surface were responsible for the observed crack growth phenomenon near a notch.  相似文献   

2.
An investigation of fatigue crack propagation in rectangular AM60B magnesium alloy plates containing an inclined through crack is presented in this paper. The behavior of fatigue crack growth in the alloy is influenced by the fracture surface roughness. Therefore, in the present investigation, a new model is developed for estimating the magnitude of the frictional stress intensity factor, kf, arising from the mismatch of fracture surface roughness during in-plane shear. Based on the concept of kf, the rate of fatigue crack propagation, db/dN, is postulated to be a function of the effective stress intensity factor range, Δkeff. Subsequently, the proposed model is applied to predict crack growth due to fatigue loads. Experiments for verifying the theoretical predictions were also conducted. The results obtained are compared with those predicted using other employed mixed mode fracture criteria and the experimental data.  相似文献   

3.
The strain energy density criterion is applied to predict fracture trajectories emanating from existing notch and crack front in nonisothermal environments. When temperature gradients are raised sufficiently high across a notch or crack, the resulting fracture trajectories are non-self-similar and curved in shape. Influence of mechanical loading is also considered in addition to stresses induced by thermal changes. Increase in the applied mechanical load tends to shift or restore the fracture trajectories toward the plane of notch or crack symmetry. The notch sharpness can be varied by adjusting the ration of the minor to major axes of an elliptical cavity. Narrowing the notch primarily increases the local intensity of the strain energy density function dW/dV that is inversely proportional to the radial distance measured from the focal point of the ellipse. This singular character of dW/dV prevails, in general, for all materials and loadings. Numerical results are obtained and displayed graphically for several examples involving fracture trajectory shapes that are not intuitively obvious.  相似文献   

4.
根据伴随着小裂纹延展过程中不同力学参数相互作用的分析研究基础之上,我们就疲劳小裂纹的扩展特性进行了分析,根据不扩展裂纹性质对小裂纹的长度范围进行了讨论,探讨了狭长缺口根部萌生的小裂纹扩展速率, 并研究了不扩展裂纹形成机理,推演出不扩展裂纹长度计算方法,发展出一种预测小裂纹扩展行为的方法,借助这种方法可以实现裂纹萌生寿命的预测,与疲劳设计相结合可以进一步提高构件安全性与可靠性.不扩展小裂纹的长度可以通过计算定量得到,它与材料的疲劳极限、裂纹门槛值及缺口尺寸等参数紧密相关.以理论数据为依据,可以设计出针对一定材料及尺寸的试样,使其在一定荷载条件下不扩展裂纹长度达到宏观可观测的范围,进而降低小裂纹测量方面的技术难度,进一步验证不扩张裂纹形成机理.  相似文献   

5.
Acoustic emission (AE) supplies information on the fracturing behavior of different materials. In this study, AE activity was recorded during fatigue experiments in metal coupons. The plates were characterized by a symmetric V-shape notch and were loaded in tension-tension fatigue until final failure with concurrent AE activity monitoring. The relatively broad bandwidth of the sensors enabled the recording of a wide range of frequencies up to 1 MHz. AE parameters like energy and duration exhibited a certain increase with the accumulation of damage although the hit rate was not significantly influenced. Furthermore the behavior of RA value (ratio of rise time to amplitude of the waveforms) which quantifies the shape of the first part of the AE signals and has been used for characterization of the cracking mode, showed a certain shift indicating the transition from tensile mode to shear which can be confirmed by the visual observation of the crack geometry after the experiment. The time history of RA is similar to the crack propagation rate (da/dN) curve but exhibits the rapid hyperbolic growth consistently about 1000 cycles earlier than final failure. Therefore, the use of acoustic emission parameters is discussed both in terms of characterization of the damage mechanisms, as well as a tool for the prediction of ultimate life of the material under fatigue.  相似文献   

6.
CTS试件中复合型疲劳裂纹扩展   总被引:3,自引:0,他引:3  
马世骧  胡泓 《力学学报》2006,38(5):698-704
针对复合型循环载荷作用下的金属构件中的裂纹扩展问题进行了实验分析和理论建模. 首先 采用紧凑拉剪试件(CTS)和 Richard研制的复合型载荷加载装置,对承受复合型循环载荷的裂纹进行了实验研究. 实验选择了两种金属材料试件,分别承受3种形式的复合型循环载荷的作用,在裂纹尖端具 有相同的初始应力场强度的条件下考察复合型循环载荷对裂纹扩展规律的影响. 实验结果表明,疲劳裂纹的扩展速率与加载角度有关. 对于同样金属材料的试件,当裂尖处 初始应力场强度相等时,载荷越接近于II型,裂纹增长速率越快. 采用等效应力强度 因子(I型和II型应力强度因子的组合)、裂纹扩展速率及复合强度等参数,以实验数据为 基础,建立了一个疲劳裂纹扩展模型,用来预测裂纹在不同模式疲劳载荷作用下的扩展速率. 为验证其有效性,该模型被应用于钢制试件的数值模拟计算中. 实验结果与模拟计算曲线保 持一致,表明该模型可以用来估算带裂纹金属构件的寿命.  相似文献   

7.
Using the technique of Dimensional Analysis the phenomenon of crack closure is modelled using the concept of a contact stress intensity factor Kc. For constant amplitude loading, a simple expression, Kcmax = g(R) ΔK, is obtained without making idealized assumptions concerning crack tip behaviour. Further, by assuming that crack closure arises from the interaction of residual plasticity in the wake of the crack and crack tip compressive stresses, the function g(R) is shown to be constant for non-workhardening materials. This implies that any dependency of Kcmax on R must be attributed to the workhardening characteristic of the material. With Kc known, an “effective” stress intensity factor Ke may be calculated and incorporated into a crack growth law of the form da/dn = f(ΔKe). From analysis, it can be deduced that for a workhardening material, Kcmax will decrease as R increases and the effective stress intensity factor will increase. This means that the fatigue crack propagation rate will increase with R, in accordance with experimental observations.  相似文献   

8.
Presented are the effect of stress ratio and thickness on the fatigue crack growth rate of CK45 steel according to DIN 17200. Test results are obtained for constant amplitude load in tension with three stress ratios of R=0, 0.2 and 0.4 and three specimen thicknesses of B=6, 12 and 24 mm. Microgauge crack opening values were used to calculate ΔKeff values from which the da/dN − ΔKeff curves are obtained. Crack closure can be applied to explain the influence of mean stress and specimen thickness on the fatigue crack growth rate in the second regime of the two-parameter crack growth rate relation. An empirical model is chosen for calculating the normalized load ratio parameter U as a function of R, B and ΔK and, for correlating the test data.  相似文献   

9.
Intrinsically, fatigue failure problem is a typical multiscale problem because a fatigue failure process deals with the fatigue crack growth from microscale to macroscale that passes two different scales. Both the microscopic and macroscopic effects in geometry and material property would affect the fatigue behaviors of structural components. Classical continuum mechanics has inability to treat such a multiscale problem since it excludes the scale effect from the beginning by introducing the continuity and homogeneity assumptions which blot out the discontinuity and inhomogeneity of materials at the microscopic scale. The main obstacle here is the link between the microscopic and macroscopic scale. It has to divide a continuous fatigue process into two parts which are analyzed respectively by different approaches. The first is so called as the fatigue crack initiation period and the second as the fatigue crack propagation period. Now the problem can be solved by application of the mesoscopic fracture mechanics theories developed in the recent years which focus on the link between different scales such as nano-, micro- and macro-scale.On the physical background of the problem, a restraining stress zone that can describe the material damaging process from micro to macro is then introduced and a macro/micro dual scale edge crack model is thus established. The expression of the macro/micro dual scale strain energy density factor is obtained which serves as a governing quantity for the fatigue crack growth. A multiscaling formulation for the fatigue crack growth is systematically developed. This is a main contribution to the fundamental theories for fatigue problem in this work. There prevail three basic parameters μ, σ and d in the proposed approach. They can take both the microscopic and macroscopic factors in geometry and material property into account. Note that μ, σ and d stand respectively for the ratio of microscopic to macroscopic shear modulus, the ratio of restraining stress to applied stress and the ratio of microvoid size ahead of crack tip to the characteristic length of material microstructure.To illustrate the proposed multiscale approach, Hangzhou Jiangdong Bridge is selected to perform the numerical computations. The bridge locates at Hangzhou, the capital of Zhejiang Province of China. It is a self-anchored suspension bridge on the Qiantang River. The cables are made of 109 parallel steel wires in the diameter of 7 mm. Cable forces are calculated by finite element method in the service period with and without traffic load. Two parameters α and β are introduced to account for the additional tightening and loosening effects of cables in two different ways. The fatigue crack growth rate coefficient C0 is determined from the fatigue experimental result. It can be concluded from numerical results that the size of initial microscopic defects is a dominant factor for the fatigue life of steel wires. In general, the tightening effect of cables would decrease the fatigue life while the loosening effect would impede the fatigue crack growth. However, the result can be reversed in some particular conditions. Moreover, the different evolution modes of three basic parameters μ, σ and d actually have the different influences on the fatigue crack growth behavior of steel wires. Finally the methodology developed in this work can apply to all cracking-induced failure problems of polycrystal materials, not only fatigue, but also creep rupture and cracking under both static and dynamic load and so on.  相似文献   

10.
Crack bridging is an important source of crack propagation resistance in many materials and the bridging stress distribution as a function of crack opening displacement is widely believed to represent a true material property uninfluenced by sample geometry, loading conditions, and other extrinsic factors. Accordingly, accurate measurement of the bridging stress distribution is needed and many non-destructive methods have been developed. However, there are many challenges to accurately determining bridging stresses. A comparison of bridging stresses measured using R-curve, crack opening displacement (COD), and spectroscopy methods has been made using two bridging ceramics, Y2O3 and MgO doped Si3N4 and 99.5% pure Al2O3. The COD method is surface sensitive and gives a lower peak bridging stress compared to the R-curve technique which samples through the entire material thickness. This is attributed to a more compliant near surface bridging zone. Conversely, when R-curves rise steeply over the first few micrometers of growth from a notch, an effect of negative T-stress is expected to raise the R-curve determined peak bridging stress. Spectroscopy methods were only found to yield reliable bridging stress results if a reasonable through thickness volume of material is sampled. It was found that 2.5% of the specimen thickness achieved using fluorescence spectroscopy appears adequate for Al2O3 while 0.1–0.2% of the sample thickness achieved using Raman spectroscopy for Si3N4 appears inadequate. Overall, it is concluded that in the absence of T-stresses a bridging distribution can be determined that is a true material property. Also, a new method is proposed for determining the bridging stresses of fatigue cracks from (1) the bridging stress distribution for monotonically loaded cracks and (2) experimental fatigue data.  相似文献   

11.
The paper describes a general computational model for modelling of subsurface fatigue crack growth under cyclic contact loading of mechanical elements. The model assumes that the initial fatigue crack develops along the slip line in a single crystal grain at the point of the maximum equivalent stress. The position and magnitude of the maximum equivalent stress are determined with the Finite Element Analysis of the equivalent contact model, which is based on the Hertzian contact conditions with the addition of frictional forces. The Virtual Crack Extension method is then used for simulation of the fatigue crack propagation from the initial to the critical crack length, when the surface material layer breaks away and a pit appears on the surface. The pit shapes and relationships between the stress intensity factor and the crack length are determined for various combinations of contacting surface curvatures and contact loadings. The computational results show that the model reliably simulates the subsurface fatigue crack growth under contact loading and can be used for computational predictions of surface pitting for various contacting mechanical elements.  相似文献   

12.
试样尺度、缺口和加载方式通常对材料的疲劳性能具有重要影响. 因此,发展关联试样尺度、缺口和加载方式对疲劳强度影响的方法对于从材料疲劳性能到结构件疲劳性能的预测具有重要意义.首先,采用旋转弯曲加载和轴向加载方式对不同几何形状EA4T车轴钢试样进行了疲劳实验.实验结果表明, 由于试样尺度的增加,轴向加载下狗骨形试样的疲劳强度明显低于沙漏形试样; 相同寿命下,缺口显著降低试样的疲劳强度. 疲劳断口扫描电镜观测结果表明,疲劳裂纹均起源于试样表面.沙漏形试样和狗骨形试样疲劳断口大多只有一个裂纹源,而缺口试样疲劳断口均具有多裂纹源特征. 然后,采用概率控制体积方法研究了试样尺度、缺口和加载方式对疲劳强度的影响,并与临界距离和应变能密度方法进行了比较. 结果表明,概率控制体积方法能够更好地关联试样尺度、缺口和加载方式对EA4T车轴钢疲劳强度的影响.最后, 提出一种基于控制体积的结构件疲劳强度预测方法,并用于具有不连续高应力区域车轴钢试样的疲劳强度预测,预测结果与实验结果 吻合.   相似文献   

13.
A pseudo-elastic damage-accumulation model is developed by application of the strain energy density theory. The three-point bending specimen is analyzed to illustrate the crack growth characteristics according to a linear elastic softening constitutive law that is typical of concrete materials. Damage accumulation is accounted for by the decrease of elastic modulus and fracture toughness. Both of these effects are assessed by means of the strain energy density functions in the elements around a slowly moving crack. The rate of change of the strain energy density factor S with crack growth as expressed by the relation dS/da = constant is shown to describe the failure behavior of concrete. Results are obtained for different loading steps that yield different slopes of lines in an S versus a (crack length) plot. The lines rotate about the common intersect in an anti-clockwise direction as the load steps are increased. The intersect shifts upward according to increase in the specimen size. In this way, the combined interaction of material properties, load steps and specimen geometry and size are easily analyzed in terms of the failure mode or behavior that can change from the very brittle to the ductile involving stable crack growth. An upper limit on specimen or structural size is established beyond which stable crack growth ceases to occur and failure corresponds to unstable crack propagation or catastrophic fracture. The parameters that control the failure mode are the threshold values of the strain energy density function (dW/dV)c and the strain energy density factor Sc.  相似文献   

14.
An analysis of determining the plane stress fracture toughness based on a beam-on-elastic foundation model for compact tension specimens (CTS) covering a wide range of a/2H and d/W ratios is presented. The solution is achieved by using the Timoshenko beam theory and Pasternak foundation with alternative formulations of the foundation modulus and the shear parameter to reflect more accurately the stress-strain distributions at the crack tip.The solution applicable to a wider range of a/2H and d/W ratios becomes desirable for practical reasons. For instance, the determination of plane-strain fracture toughness from the CTS specimens at higher a/W ratios enables the reduction of loading capacity from a testing machine which may become prohibitively high for medium strength engineering materials. Maximum fatigue crack growth data to be measured from a CTS specimen also becomes possible when the validity of fracture toughness can be ensured at the extended a/W ratios.The computed fracture toughness from the present analysis are compared with those measured experimentally and found to be satisfactory not only for high a/W ratios but also for a wide range of a/2H ratios commonly used in double-cantilever beam specimens.  相似文献   

15.
安兵兵  李凯  张东升 《力学学报》2010,42(6):1164-1171
采用稳态裂纹扩展和疲劳裂纹扩展的实验, 研究了牛皮质骨横向和纵向裂纹扩展的断裂力学行为. 沿着两个方向制备了紧凑拉伸(CT)试件. 由于试件尺寸的限制,采用数值计算方法确定了裂纹尖端应力强度因子与裂纹长度的关系. 在实验中, 采用数字图像相关法精确测定裂纹尖端的位置. 由于裂纹沿横向扩展时有较大的偏斜, 将采用$J$积分测量其断裂韧性. 实验结果表明, 在裂纹扩展的一定范围内, 皮质骨的断裂韧度随着裂纹不断扩展而增大, 即表现出上升的阻力曲线(R-curve)性质.而皮质骨的横向裂纹扩展的断裂韧度要远远大于纵向裂纹扩展的断裂韧度, 表现出各向异性的阻力曲线行为. 在疲劳裂纹扩展中, 纵向疲劳裂纹扩展率要大于横向疲劳裂纹扩展率, 这说明皮质骨具有各向异性的疲劳裂纹扩展性质.   相似文献   

16.
沈珉  杨海元 《实验力学》1999,14(3):302-308
本文针对三种国产材料 Ly11cz、 Ly12cz 铝合金和 18 Mn H P钢,通过实验初步考察了循环塑性预应变和循环载荷压缩部分对疲劳裂纹扩展的影响;采用电测法,测定了两种铝合金材料疲劳裂纹扩展的张开应力和有效应力强度因子幅值比 U。结果表明:(1)材料循环塑性预应变和循环载荷压缩部分,都使疲劳裂纹扩展速率提高;(2)常幅载荷下,在疲劳裂纹稳定扩展阶段,有效应力强度因子幅值比 U 与应力比 R 有关,与裂纹长度a 无关,并依赖于材料的力学性能。  相似文献   

17.
The effect of frequency and sample shape on fatigue behaviors of DZ125 superalloy are systematically studied. The results show that fatigue fracture still occurs above the cycle of 108 for tests carried out at the frequency of f = 20 kHz and stress ratio R = ?1, so the traditional fatigue limit at cycle of 107 is not appropriate for fatigue design. Fatigue fracture surfaces are perpendicular to stress axis for cylindrical and plate specimens, and the fatigue cracks originate from the extra surface of the specimens. Fatigue crack is apt to propagate from cutting direction to forward direction, which occurs mainly in the second propagation stage at higher stress amplitude. There is an obvious frequency effect for DZ125 superalloy. The higher the test frequency is, the more serious the effect of frequency on fatigue behaviors of the alloy. After the frequency correction, the ultra-high cycle fatigue S-N curve well coincide with the traditional fatigue S-N curve.  相似文献   

18.
The stages of the growth of small cracks initiating at natural flaws in smooth specimens subjected to fatigue loading are characterized and the dominant propagation mechanisms and corresponding fracture paths are described. Characteristic crack lengths are introduced to assess the transition between the regimes of microstructurally small cracks, physically small cracks and long cracks. A log Δσ-log a-diagram is used to derive estimates of these crack lengths. It is shown that simple formulate can be found which relate these characteristic crack lengths to mechanical and material parameters that can be measured using standard fracture mechanics specimens and fatigue tests.  相似文献   

19.
叶文静  王莉华 《力学季刊》2021,42(4):752-762
材料发生疲劳断裂时往往会引起重大安全事故,而基于传统数值模拟方法求解疲劳裂纹扩展问题时模 型复杂、计算量大.本文基于包含多隐层的反向传播神经网络分析金属材料疲劳裂纹扩展行为,计算了裂纹扩 展过程中的 von Mises应力场和位移场,并与数值解和实验解进行对比,误差分析结果表明其求解精度高.并 基于该神经网络有效预测了裂纹扩展中裂纹长度及裂纹扩展速率的变化过程,预测精度高.该神经网络分析方 法可为材料剩余寿命和疲劳强度预测提供研究基础.  相似文献   

20.
The safety of many civil and mining concrete and rock structures including pre-existing crack networks is fundamentally affected by the mechanical behaviour of the material under static and cyclic loading. In cyclic loading case, cracks can grow at a lower load level compared to the monotonic case. This phenomenon is called fatigue due to subcritical crack propagation and depends on the behaviour of the fracture process zone (FPZ). This study presents the results of laboratory diametrical compression tests performed on Brisbane tuff disc specimens to investigate their mode-I (tensile) fracture toughness response to static and cyclic loading and relevant FPZ. The FPZ and fracture toughness response to cyclic loading was found to be different from that under static loading in terms of the ultimate load and the damage mechanisms in front of the chevron crack. A maximum reduction of the static fracture toughness (K IC ) of 42 % was obtained for the highest amplitude increasing cyclic loading test. Detailed scanning electron microscope (SEM) examinations were performed on the surfaces of the tips of the chevron notch cracks, revealing that both loading methods cause FPZ development in the CCNBD specimens. When compared with monotonic FPZ development, the main difference with the cyclically loaded specimens was that intergranular cracks were formed due to particle breakage under cyclic loading, while smooth and bright cracks along cleavage planes were formed under static loading. Further, the SEM images showed that fatigue damage in Brisbane tuff is strongly influenced by the failure of the matrix because of both intergranular and transgranular subcritical fracturing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号