首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Purified lipid transfer protein LTP2 from barley applied on tobacco leaves eliminated symptoms caused by infiltration of Pseudomonas syringae pv. tabaci 153. Growth of the pathogen in leaves of transgenic tobacco plants was retarded when compared with non-transformed controls. The percentage of inoculation points that showed necrotic lesions was greatly reduced in transgenic tobacco (17-38% versus 78%) and the average size of these lesions was 61-81% that of control. The average total lesion area (necrosis and chlorosis) in the transgenic plants was also reduced (38% of control). Arabidopsis thaliana transgenic plants inoculated with P. syringae pv. tomato DC3000 also had lower percentages of necrotic lesions (22-38% versus 76%), a reduced average area for each lesion (53-67% of control), and a smaller total lesion area per inoculation (43% of control). These results further support the assignment of a defense role for LTPs and highlight their biotechnological potential.  相似文献   

2.
Activation of human plasma lipid transfer protein (LTP) by apolipoproteins was studied. Pyrenelabeled cholesteryl ester was used as a probe substrate for the transfer reaction between lipid microemulsions, with a diameter of 26 nm, of triglyceride and phosphatidylcholine, and the reaction was monitored as a change in the ratio of the peaks of monomer and excimer in the fluorescence spectrum of pyrene. The transfer of pyrene-cholesteryl ester was hardly catalyzed by highly isolated LTP in the absence of apolipoprotein unless extreme overdose of LTP was given, regardless of the presence of bovine serum albumin. Human apolipoprotein (apo) A-I and apoA-II activated the LTP reaction in a dose-dependent manner. The activation was directly proportional to the titration of the surface of the substrate lipid emulsions by the apolipoproteins when the rate was plotted against the apolipoproteins bound to the surface. Human apoE also activated the LTP reaction in the same manner. The activation by human apoC-III was also proportional to the surface-bound protein, but the rate of the transfer was lower than those with other apolipoproteins. Displacement of apoA-I by apoC-III from the lipid emulsion surface, therefore, resulted in apparent deactivation of the LTP reaction. Thus, LTP requires apolipoproteins for its activation, and the activation seems proportional to the area of the surface of the lipid substrate particles modified by apolipoproteins. ApoA-I, -A-II, and -E are more potent activators than apoC-III for cholesteryl ester transfer.  相似文献   

3.
In higher plant cytokinesis, plasma membrane and cell wall originate by vesicle fusion in the plane of cell division. The Arabidopsis KNOLLE gene, which is required for cytokinesis, encodes a protein related to vesicle-docking syntaxins. We have raised specific rabbit antiserum against purified recombinant KNOLLE protein to show biochemically and by immunoelectron microscopy that KNOLLE protein is membrane associated. Using immunofluorescence microscopy, KNOLLE protein was found to be specifically expressed during mitosis and, unlike the plasma membrane H+-ATPase, to localize to the plane of division during cytokinesis. Arabidopsis dynamin-like protein ADL1 accumulates at the plane of cell plate formation in knolle mutant cells as in wild-type cells, suggesting that cytokinetic vesicle traffic is not affected. Furthermore, electron microscopic analysis indicates that vesicle fusion is impaired. KNOLLE protein was detected in mitotically dividing cells of various parts of the developing plant, including seedling root, inflorescence meristem, floral meristems and ovules, and the cellularizing endosperm, but not during cytokinesis after the male second meiotic division. Thus, KNOLLE is the first syntaxin-like protein that appears to be involved specifically in cytokinetic vesicle fusion.  相似文献   

4.
The cDNA encoding a wheat (Triticum durum) lipid transfer protein of 9 kDa was inserted into an Escherichia coli expression vector, pIH902, and expressed in the bacteria as a fusion with the maltose binding protein. The fusion protein was then purified to homogeneity and subjected to factor Xa cleavage. Although complete cleavage of the fusion protein was obtained, the expected lipid transfer protein was not recovered; it appears to be degraded during protease digestion. However, a fluorescent lipid transfer assay demonstrated that the fusion protein has an activity identical to that of the wheat-purified lipid transfer protein. Thus, this expression system should allow further understanding of the structure/function relationships of wheat lipid transfer proteins.  相似文献   

5.
Presynaptic paired-pulse facilitation (PPF) rate decreased in most CA1 pyramidal neurones following the long-term potantiation (LTP) induction. The decrease correlated with the LTP magnitude as well as with the initial (pretetanic) PPF rate. The data obtained suggests an involvement of presynaptic mechanisms in maintaining the early and the delayed LTPs.  相似文献   

6.
From rape (Brassica napus) seedlings proteins able to bind fatty acids and their CoA-esters were purified by gel filtration and cation-exchange chromatography. Among the four proteins detected, one of them (peak IV) appeared purified to homogeneity. This protein is a monomer with a molecular mass of about 9 kDa, as estimated by gel filtration and by polyacrylamide gel electrophoresis. The isoelectric point of the rape protein was higher than 10.5 as determined by chromatofocusing. The pure rape protein appeared furthermore to be able to transfer several phospholipids (phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine) between membranes. The rape protein, having a multifunctional property, was thus called acyl-binding/lipid-transfer protein (AB-LTP). In order to compare this protein to plant lipid-transfer proteins (LTPs), its structure was determined. The amino acid analysis of the rape AB-LTP revealed a high amount of alanine, an absence of histidine and tryptophan and the presence of eight cysteine residues. The N-terminal amino acid sequence of the rape protein revealed a high homology to plant LTPs. These observations led us to propose that the rape AB-LTPs belong to a category of plant proteins interacting with lipids and playing a role in the fatty acid dynamics.  相似文献   

7.
We describe the characteristics of long-term potentiation (LTP) in the intact mouse. Perforant path stimulation evokes both a population excitatory postsynaptic potential (pop-EPSP) and a population spike potential (pop-spike) from the hippocampal dentate gyrus in urethane anesthetized animals. LTP, as measured by increased pop-spike amplitude and pop-EPSP slope, was successfully induced and reliably maintained at a stable level for at least 12 h, the longest time tested. The LTP-inducing stimulus (3 trains of 400 Hz, 8 0.4 ms pulses/train) used in two strains of mice was less by half than that used in rat. These parameters for inducing LTP were also successfully applied to obtain LTP in two different transgenic mouse strains: one bearing a F1/Gap-43 promoter-lacZ fusion gene and another which overexpresses the S100 beta gene. We also examined the effects of protein synthesis inhibitors, cycloheximide (CXM) and anisomycin (ANI). When CXM or ANI was given 30 min before LTP induction, there was no persistent loss of LTP at the 4 h time point. However, if CXM was given 4 h before LTP induction, significant decay of the potentiated responses occurred 90 min after induction. Half of the animals receiving CXM but not ANI showed a complete and sudden elimination of the entire response after the LTP-inducing stimulus. It was speculated that loss of a constitutively-expressed housekeeping protein, for example a calcium buffering protein, with an estimated half-life of 2 h would lead to an inability to buffer LTP-induced alterations, such as intracellular calcium elevation, increasing intracellular calcium to toxic levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
Hippocampal synapses express two distinct forms of the long-term potentiation (LTP), i.e. NMDA receptor-dependent and -independent LTPs. To understand its molecular-anatomical basis, we produced affinity-purified antibodies against the GluRepsilon1 (NR2A), GluRepsilon2 (NR2B), and GluRzeta1 (NR1) subunits of the N-methyl-D-aspartate (NMDA) receptor channel, and determined their distributions in the mouse hippocampus. Using NMDA receptor subunit-deficient mice as the specificity controls, section pretreatment with proteases (pepsin and proteinase K) was found to be very effective to detect authentic NMDA receptor subunits. As the result of modified immunohistochemistry, all three subunits were detected at the highest level in the strata oriens and radiatum of the CA1 subfield, and high levels were also seen in most other neuropil layers of the CA1 and CA3 subfields and of the dentate gyrus. However, the stratum lucidum, a mossy fibre-recipient layer of the CA3 subfield, contained low levels of the GluRepsilon1 and GluRzeta1 subunits and almost excluded the GluRepsilon2 subunit. Double immunofluorescence with the AMPA receptor GluRalpha1 (GluR1 or GluR-A) subunit further demonstrated that the GluRepsilon1 subunit was colocalized in a subset, not all, of GluRalpha1-immunopositive structures in the stratum lucidum. Therefore, the selective scarcity of these NMDA receptor subunits in the stratum lucidum suggests that a different synaptic targeting mechanism exerts within a single CA3 pyramidal neurone in vivo, which would explain contrasting significance of the NMDA receptor channel in LTP induction mechanisms between the mossy fibre-CA3 synapse and other hippocampal synapses.  相似文献   

10.
PSP94 has the potential to be a useful diagnostic marker and therapeutic agent in prostate cancer. Recently, different immunoassay systems for quantitative analysis of PSP94 in clinical samples have been developed, but the epitope structure of PSP94 protein has not been elucidated. In this study, we report an Escherichia coli expression system for recombinant GST-PSP94 fusion protein. GST-PSP94 contains antigenic determinants similar to natural PSP94 protein (determined both by Western blotting experiments and by ELISA) and can be used to study the structure of natural PSP94 antigen. Since GST-PSP94 was expressed in E. coli and purification involved a denaturing process, we propose that the epitope structure of PSP94 is linear and largely dependent on the primary amino acid sequence, rather than conformational structure. This hypothesis was supported by reciprocal competition in ELISA among natural, GST-PSP94 fusion protein, and purified recombinant PSP94 protein. The results demonstrate that the various forms of PSP94 can compete with each other in binding to rabbit PSP94 polyclonal antibody, although the natural PSP94 has a slightly higher affinity. When natural and recombinant PSP94 protein were denatured in vitro with urea and alkali, no effect on the binding to antibody was found. The epitope activity of natural PSP94 was also shown to be resistant to the treatment of detergent and reducing agent. The location of one of the linear epitopes recognized by the PSP94 antibody was determined to be in the N-terminus by using two synthetic peptides representing N- and C-terminal sequences. Competitive ELISA between the N-terminal peptide and PSP94 protein indicate that both natural and GST-PSP94 have similar immunoactive N-termini.  相似文献   

11.
VirD2 is one of the key Agrobacterium tumefaciens proteins involved in T-DNA processing and transfer. In addition to its endonuclease domain, VirD2 contains a bipartite C-terminal nuclear localization sequence (NLS) and a conserved region called omega that is important for virulence. Previous results from our laboratory indicated that the C-terminal, bipartite NLS and the omega region are not essential for nuclear uptake of T-DNA, and further suggested that the omega domain may be required for efficient integration of T-DNA into the plant genome. In this study, we took two approaches to investigate the importance of the omega domain in T-DNA integration. Using the first approach, we constructed a T-DNA binary vector containing a promoterless gusA-intron gene just inside the right T-DNA border. The expression of beta-glucuronidase (GUS) activity in plant cells transformed by this T-DNA would indicate that the T-DNA integrated downstream of a plant promoter. Approximately 0.4% of the tobacco cell clusters infected by a wild-type A. tumefaciens strain harboring this vector stained blue with 5-bromo-4-chloro-3-indolyl beta-D-glucuronic acid (X-gluc). However, using an omega-mutant A. tumefaciens strain harboring the same binary vector, we did not detect any blue staining. Using the second approach, we directly demonstrated that more T-DNA is integrated into high-molecular-weight plant DNA after infection of Arabidopsis thaliana cells with a wild-type A. tumefaciens strain than with a strain containing a VirD2 omega deletion/substitution. Taken together, these data indicate that the VirD2 omega domain is important for efficient T-DNA integration. To determine whether the use of the T-DNA right border is altered in those few tumors generated by A. tumefaciens strains harboring the omega mutation, we analyzed DNA extracted from these tumors. Our data indicate that the right border was used to integrate the T-DNA in a similar manner regardless of whether the VirD2 protein encoded by the inciting A. tumefaciens was wild-type or contained an omega mutation. In addition, a mutant VirD2 protein lacking the omega domain was as least as active in cleaving a T-DNA border in vitro as was the wild-type protein. Finally, we investigated the role of various amino acids of the omega and bipartite NLS domains in the targeting of a GUS-VirD2 fusion protein to the nucleus of electroporated tobacco protoplasts. Deletion of the omega domain, or mutation of the 10-amino-acid region between the two components of the bipartite NLS, had little effect upon the nuclear targeting of the GUS-VirD2 fusion protein. Mutation of both components of the NLS reduced, but did not eliminate, targeting of the fusion protein to the nucleus.  相似文献   

12.
The single chain ribosome-inactivating protein Saporin-S6 (SO-6) induces the fusion of acid phospholipid vesicles. The extent of fusion was measured by resonance energy transfer assay between the N-(7-nitro-2-1,3-benzoxadiazol-4-yl)-dimyristoylphosphatidyl lithanolamine (NBD-PE)(donor) and N-(lissamine rhodamine B sulphonyl)-diacylphoshaidylethanolamine (Rh-PE) (acceptor) incorporated in the vesicle. The saturated lipid/protein molar ratio is approx. 100:1. The time course of fusion of vesicles induced by the protein showed that the process was completed within 10 minutes, and the size of the particles in the medium was enlarged which conforms the occurrence of the fusion occurring. The fusion is temperature dependent and the liquid-crystalline state lipid is more apt to fuse than the gel phase lipid. The effect of SO-6 is also dependent on ionic strength and pH, high salt concentration and basic pH may abolish fusion, which suggests that both electrostatic and hydrophobic components may be involved in the process.  相似文献   

13.
The assembly of integral membrane proteins is determined by features of these proteins and the protein translocation apparatus. We used alkaline phosphatase fusions to the membrane protein MalF to investigate the role of the protein translocation machinery in the arrangement of proteins in the cytoplasmic membrane of Escherichia coli. In particular, we studied the effects of prlA mutations on membrane protein topology. These mutations lie in the secY gene, which encodes a core component of the protein translocation apparatus. We find that the topology of some of the fusion proteins is changed and, in one case, is completely inverted in prlA mutants. We discuss the mechanism of prlA-mediated export and the role of the protein translocation apparatus in contributing to membrane protein topology.  相似文献   

14.
Agrobacterium tumefaciens induces crown gall tumors on plants by transferring a nucleoprotein complex, the T-complex, from the bacterium to the plant cell. The T-complex consists of T-DNA, a single-stranded DNA segment of the tumor-inducing plasmid, VirD2, an endonuclease covalently bound to the 5' end of the T-DNA, and perhaps VirE2, a single-stranded DNA binding protein. The yeast two-hybrid system was used to screen for proteins interacting with VirD2 and VirE2 to identify components in Arabidopsis thaliana that interact with the T-complex. Three VirD2- and two VirE2-interacting proteins were identified. Here we characterize the interactions of VirD2 with two isoforms of Arabidopsis cyclophilins identified by using this analysis. The VirD2 domain interacting with the cyclophilins is distinct from the endonuclease, omega, and the nuclear localization signal domains. The VirD2-cyclophilin interaction is disrupted in vitro by cyclosporin A, which also inhibits Agrobacterium-mediated transformation of Arabidopsis and tobacco. These data strongly suggest that host cyclophilins play a role in T-DNA transfer.  相似文献   

15.
The yellow color of Bombyx mori hemolymph is due to the presence of carotenoids, which are primarily associated with lipophorin particles. Carotenoids were extracted from high density lipophorin (HDLp) of B. mori and analyzed by HPLC. HDLp contained 33 micrograms of carotenoids per mg protein. Over 90% of carotenoids were lutein while alpha-carotene and beta-carotene were minor components. When larval hemolymph was subjected to density gradient ultracentrifugation, a second minor yellow band was present, which was identified as B. mori lipid transfer particle (LTP). During other life stages examined however, this second band was not visible. To determine if coloration of LTP may fluctuate during development, we determined its concentration in hemolymph and compared it to that of lipophorin. Both proteins were present during all life stages and their concentrations gradually increased. The ratio of lipophorin: LTP was 10-15:1 during the fourth and fifth instar larval stages, and 20-30:1 during the pupal and adult stages. Thus, there was no correlation between the yellow color attributed to LTP and its hemolymph concentration. It is possible that yellow coloration of the LTP fraction corresponds to developmental stages when the particle is active in carotene transport. To determine if LTP is capable of facilitating carotene transfer, we took advantage of a white hemolymph B. mori strain which, when fed artificial diet containing a low carotene content, gives rise to a lipophorin that is nearly colorless. A spectrophotometric, carotene specific, transfer assay was developed which employed wild type, carotene-rich HDLp as donor particle and colorless low density lipophorin, derived from the white hemolymph strain animals, as acceptor particle. In incubations lacking LTP carotenes remained associated with HDLp while inclusion of LTP induced a redistribution of carotenes between the donor and acceptor in a time and concentration dependent manner. Time course studies suggested the rate of LTP-mediated carotene transfer was relatively slow, requiring up to 4 h to reach equilibrium. By contrast, studies employing 3H-diacylglycerol labeled HDLp as donor particle in lipid transfer assays revealed a rapid equilibration of label between the particles. Thus, it is plausible that the slower rate of LTP-mediated carotene transfer is due to its probable sequestration in the core of HDLp.  相似文献   

16.
Previous studies have shown that lipid transfer protein (LTP) activity is strongly temperature dependent, demonstrating a dramatic rise in activity near 37 degrees C. We have investigated the origin of this rapid rise in LTP activity. LTP-mediated transfers of radiolabeled cholesteryl ester (CE) from LDL to HDL, HDL to LDL, LDL to biotin-LDL, HDL to biotin-HDL, and between liposomes were determined as a function of assay temperature. Only assays containing LDL demonstrated this rapid rise in CE transfer activity. In contrast, TG transfer was almost linear with assay temperature. As human LDL CE undergoes a thermal phase transition near 37 degrees C, we investigated whether the rapid rise in CE transfer was dependent on this transition. Monkey LDL were isolated from animals consuming diets containing cholesterol and enriched in saturated, monounsaturated, or polyunsaturated fatty acids. With these LDL as substrate, the CE transfer between 21 degrees and 49 degrees C could be described by two straight lines, the intersection of which defined the inflection temperature. Among eight LDL samples, the inflection temperature was highly correlated with the CE phase transition determined by differential scanning calorimetry (r2 = 0.86). Both calorimetry and CE transfer activity inflection values were correlated with the saturated + monoene/polyene ratio of the LDL cholesteryl esters (r2 = 0.733 and 0.612, respectively). For LDL with inflection temperatures below 37 degrees C, CE transfer activity at 37 degrees C increased 10-14% for each 1 degree C decrease in the inflection temperature. We conclude that LTP activity is markedly affected by the physical state of the core CE. Diets rich in saturated fatty acids may result in LDL that are poor LTP substrates, which may hinder LTP's ability to promote normal lipoprotein remodeling.  相似文献   

17.
One important aspect of synaptic plasticity is that transient stimulation of neuronal cell surface receptors can lead to long-lasting biochemical and physiological effects in neurons. In long-term potentiation (LTP), generation of autonomously active protein kinase C (PKC) is one biochemical effect persisting beyond the NMDA receptor activation that triggers plasticity. We previously observed that the expression of early LTP is associated with a phosphatase-reversible alteration in PKC immunoreactivity, suggesting that autophosphorylation of PKC might be elevated in LTP. In the present studies we tested the hypothesis that PKC phosphorylation is persistently increased in the early maintenance of LTP. We generated an antiserum that selectively recognizes the alpha and betaII isoforms of PKC autophosphorylated in the C-terminal domain. Using western blotting with this antiserum we observed an NMDA receptor-mediated increase in phosphorylation of PKC 1 h after LTP was induced. How is the increased phosphorylation maintained in the cell in the face of ongoing phosphatase activity? We observed that dephosphorylation of PKC in vitro requires the presence of cofactors normally serving to activate PKC, i.e., Ca2+, phosphatidylserine, and diacylglycerol. Based on these observations and computer modeling of the three-dimensional structure of the PKC catalytic core, we propose a "protected site" model of PKC autophosphorylation, whereby the conformation of PKC regulates accessibility of the phosphates to phosphatase. Although we have proposed the protected site model based on our studies of PKC phosphorylation in LTP, phosphorylation of protected sites might be a general biochemical mechanism for the generation of stable, long-lasting physiologic changes.  相似文献   

18.
The purpose of these studies was to determine the distribution of a lipophilic antimalarial agent, halofantrine hydrochloride (Hf), in fasted plasma from hypo-, normo-, and hyperlipidemic patients that displayed differences in lipoprotein concentration and lipid transfer protein I (LTP I) activity. To assess the influence of modified lipoprotein concentrations and LTP I activity on the plasma distribution of Hf, Hf at a concentration of 1000 ng/mL was incubated in either hypo-, normo-, or hyperlipidemic human plasma for 1 h at 37 degreesC. Following incubation, the plasma samples were separated into their lipoprotein and lipoprotein-deficient plasma (LPDP) fractions by density gradient ultracentrifugation and assayed for Hf by high-pressure liquid chromatography. The activity of LTP I in the dyslipidemic plasma samples was determined in terms of its ability to transfer cholesteryl ester from low-density lipoproteins (LDL) to high-density lipoproteins (HDL). Total plasma and lipoprotein cholesterol (esterified and unesterified), triglyceride, and protein levels in the dyslipidemic plasma samples were determined by enzymatic assays. When Hf was incubated in normolipidemic plasma for 1 h at 37 degreesC, the majority of drug was found in the LPDP fraction. When Hf was incubated in human plasma of varying total lipid, lipoprotein lipid, and protein concentrations and LTP I activity, the following relationships were observed. As the triglyceride-rich lipoprotein (TRL) lipid and protein concentration increased from hypolipidemia through to hyperlipidemia, the proportion of Hf associated with TRL increased (r > 0.90). As the HDL lipid and protein concentration increased, the proportion of Hf associated with HDL decreased (r > 0.70). As the total and lipoprotein lipid levels increased, the LTP I activity of the plasma also proportionally increased (r > 0.85). Furthermore, with the increase in LTP I activity, the proportion of Hf associated with the TRL fraction increased (r > 0.70) and the proportion of Hf associated with the HDL fraction decreased (r > 0.80). In addition, a positive correlation between the proportion of apolar lipid and Hf recovered within each lipoprotein fraction was observed within hypo- (r > 0.80), normo- (r = 0.70), and hyperlipidemic (r > 0.90) plasmas. These findings suggest that changes in the HDL and TRL lipid and protein concentrations, LTP I activity, and the proportion of apolar lipid within each lipoprotein fraction may influence the plasma lipoprotein distribution of Hf in dyslipidemia.  相似文献   

19.
The green fluorescent protein (GFP) is currently being used for diverse cellular biology approaches, mainly as a protein tag or to monitor gene expression. Recently it has been shown that GFP can also be used to monitor the activation of second messenger pathways by the use of fluorescence resonance energy transfer (FRET) between two different GFP mutants fused to a Ca2+sensor. We show here that GFP fusions can also be used to obtain information on regions essential for protein function. As FRET requires the two GFPs to be very close, N- or C-terminal fusion proteins will not generally produce FRET between two interacting proteins. In order to increase the probability of FRET, we decided to study the effect of random insertion of two GFP mutants into a protein of interest. We describe here a methodology for random insertion of GFP into the cAMP-dependent protein kinase regulatory subunit using a bacterial expression vector. The selection and analysis of 120 green fluorescent colonies revealed that the insertions were distributed throughout the R coding region. 14 R/GFP fusion proteins were partially purified and characterized for cAMP binding, fluorescence and ability to inhibit PKA catalytic activity. This study reveals that GFP insertion only moderately disturbed the overall folding of the protein or the proper folding of another domain of the protein, as tested by cAMP binding capacity. Furthermore, three R subunits out of 14, which harbour a GFP inserted in the cAMP binding site B, inhibit PKA catalytic subunit in a cAMP-dependent manner. Random insertion of GFP within the R subunit sets the path to develop two-component FRET with the C subunit.  相似文献   

20.
Hypothalamic GABAergic activity and immune response in spleen were not significantly changed with the increase of age from 3 to 6 months in adult male albino rats. Further increase of age from 6 to 9 months increase the GABAergic activity and decreased the cell viability in spleen without any change in its T-lymphocyte cytotoxicity. Consumption of low protein diet (LPD) for a short-term period (STP; 7 consecutive days) increased the hypothalamic GABAergic activity without changing the immune response in 3 months old rats. When supplemented for a long-term period (LTP; 30 consecutive days) to 3 months old rats, a reduction of hypothalamic GABAergic activity and the immune response was observed. Intake of high protein diet (HPD) for both STP and LTP increased the GABAergic activity and immune response, but the increase of GABAergic activity in hypothalamus under STP was greater than that observed under LTP. In 6 months old rats consumption of LPD for STP reduced the GABAergic activity without any alteration of its immune response. Long-term supplementation of this LPD to the same age group increased GABAergic activity and the mitotic activity of spleen cells without any alteration of the functional activity of the T-cells in spleen. Consumption of HPD for STP failed to produce any change in hypothalamic GABAergic activity and the immune response of 6 months old rats. Supplementation of HPD for LTP reduced the hypothalamic GABAergic activity and the immune response of the same age group. The reduction in hypothalamic GABAergic activity without any change in the immune response was observed following the supplementation of low protein diet to 9 months old rat for STP. Intake of the LPD for LTP also reduced the hypothalamic GABAergic activity and the mitotic activity of the spleen cells without any alteration of the functional activity of the T-cells in spleen of 9 months old rats. Supplementation of HPD for STP to this aged rat, on the other hand, failed to produced any change in hypothalamic GABAergic activity and the immune response. Intake of HPD for LTP by this aged rats increased the hypothalamic GABAergic activity along with the immune response. The results of this study, thus, suggest that hypothalamic GABAergic activity during aging is an index of immune response and it is modulated following the short- and long-term consumption of protein poor and protein rich diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号