首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
We show that the effect of principal pivot transform on the nullity values of the principal submatrices of a given (square) matrix is described by the symmetric difference operator (for sets). We consider its consequences for graphs, and in particular generalize the recursive relation of the interlace polynomial and simplify its proof.  相似文献   

2.
A chord diagram is a set of chords of a circle such that no pair of chords has a common endvertex. A chord diagram E is called nonintersecting if E contains no crossing. For a chord diagram E having a crossing S={x1x3,x2x4}, the expansion of E with respect to S is to replace E with E1=(E?S){x2x3,x4x1} or E2=(E?S){x1x2,x3x4}. For a chord diagram E, let f(E) be the chord expansion number of E, which is defined as the cardinality of the multiset of all nonintersecting chord diagrams generated from E with a finite sequence of expansions.In this paper, it is shown that the chord expansion number f(E) equals the value of the Tutte polynomial at the point (2,?1) for the interlace graph GE corresponding to E. The chord expansion number of a complete multipartite chord diagram is also studied. An extended abstract of the paper was published (Nakamigawa and Sakuma, 2017) [13].  相似文献   

3.
In this paper we discuss the two variable Ising polynomials in a graph theoretical setting. This polynomial has its origin in physics as the partition function of the Ising model with an external field. We prove some basic properties of the Ising polynomial and demonstrate that it encodes a large amount of combinatorial information about a graph. We also give examples which prove that certain properties, such as the chromatic number, are not determined by the Ising polynomial. Finally we prove that there exist large families of non-isomorphic planar triangulations with identical Ising polynomial.  相似文献   

4.
We study relationships between the colored Jones polynomial and the A-polynomial of a knot. The AJ conjecture (of Garoufalidis) that relates the colored Jones polynomial and the A-polynomial is established for a large class of two-bridge knots, including all twist knots. We formulate a weaker conjecture and prove that it holds for all two-bridge knots. Along the way we also calculate the Kauffman bracket skein module of the complements of two-bridge knots. Some properties of the colored Jones polynomial are established.  相似文献   

5.
We provide a systematic construction of point configurations with incompatible Radon-split and Helly-core. This provides a resolution of problems of Reay and Sierksma, and shows that it is computationally hard to decide the compatibility of the split and core of a configuration. Received 29 June 2000; revised 5 January 2001.  相似文献   

6.
设f:I×I是光滑的,f=f(x,y),I=[o,1],y为参数,本文证明f的不动点组成的图有连通分枝.作为应用,给出了二维Brouwer不动点定理的新证明.这是迄今为止最直接的证明.,The graph properties of the fixed points of a continuous self-mapping on unit closed interval with a parameter were studied. The existence of some kind of connected branch was shown. By this result, a new proof of two dimensional Brouwer's fixed point theorem was given.  相似文献   

7.
We observe that a formula given by Negami [Polynomial invariants of graphs, Trans. Amer. Math. Soc. 299 (1987) 601-622] for the Tutte polynomial of a k-sum of two graphs generalizes to a colored Tutte polynomial. Consequently, an algorithm of Andrzejak [An algorithm for the Tutte polynomials of graphs of bounded treewidth, Discrete Math. 190 (1998) 39-54] may be directly adapted to compute the colored Tutte polynomial of a graph of bounded treewidth in polynomial time. This result has also been proven by Makowsky [Colored Tutte polynomials and Kauffman brackets for graphs of bounded tree width, Discrete Appl. Math. 145 (2005) 276-290], using a different algorithm based on logical techniques.  相似文献   

8.
A flat of a matroid is cyclic if it is a union of circuits. The cyclic flats of a matroid form a lattice under inclusion. We study these lattices and explore matroids from the perspective of cyclic flats. In particular, we show that every lattice is isomorphic to the lattice of cyclic flats of a matroid. We give a necessary and sufficient condition for a lattice of sets and a function to be the lattice of cyclic flats of a matroid and the restriction of the corresponding rank function to . We apply this perspective to give an alternative view of the free product of matroids and we show how to compute the Tutte polynomial of the free product in terms of the Tutte polynomials of the constituent matroids. We define cyclic width and show that this concept gives rise to minor-closed, dual-closed classes of matroids, two of which contain only transversal matroids. Received May 29, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号