首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the cellular and subcellular distribution of surfactant protein D (SP-D) by immunogold labeling in lungs of adult rats that had been given bovine serum albumin coupled to 5-nm gold (BSAG) for 2 hr to visualize the endocytotic pathway. Specific gold labeling for SP-D was found in alveolar Type II cells, Clara cells, and alveolar macrophages. In Type II cells abundant labeling was observed in the endoplasmic reticulum, whereas the Golgi complex and multivesicular bodies were labeled to a limited extent only. Lamellar bodies did not seem to contain SP-D. Gold labeling in alveolar macrophages was restricted to structures containing endocytosed BSAG. In Clara cells labeling was found in the endoplasmic reticulum, the Golgi complex, and was most prominent in granules present in the apical domain of the cell. Double labeling experiments with anti-surfactant protein A (SP-A) showed that both SP-A and SP-D were present in the same granules. However, SP-A was distributed throughout the granule contents, whereas SP-D was confined to the periphery of the granule. The Clara cell granules are considered secretory granules and not lysosomes, because they were not labeled for the lysosomal markers cathepsin D and LGP120, and they did not contain endocytosed BSAG.  相似文献   

2.
The adsorptive properties of phospholipids of pulmonary surfactant are markedly influenced by the presence of three related proteins (26-38 KD, reduced) found in purified surfactant. Whether these proteins are pre-assembled with lipids before secretion is uncertain but would be expected for a lipoprotein secretion. We performed indirect immunocytochemistry on frozen thin sections of rat lung to identify cells and intracellular organelles that contain these proteins. The three proteins, purified from lavaged surfactant, were used to generate antisera in rabbits. Immunoblotting of rat surfactant showed that the IgG reacted with the three proteins and a 55-60 KD band which may be a polymer of the lower MW species. Specific gold labeling occurred over alveolar type II cells, bronchiolar Clara cells, alveolar macrophages, and tubular myelin. In type II cells labeling occurred in synthetic organelles and lamellar bodies, which contain surfactant lipids. Lamellar body labeling was increased fivefold by pre-treating tissue sections with a detergent. Multivesicular bodies and some small apical vesicles in type II cells were also labeled. Secondary lysosomes of alveolar macrophages were immunoreactive. Labeling in Clara cells exceeded that of type II cells, with prominent labeling in secretory granules, Golgi apparatus, and endoplasmic reticulum. These observations clarify the organelles and pathways utilized in the elaboration of surfactant. After synthesis, the proteins move, probably via multivesicular bodies, to lamellar bodies. Both lipids and proteins are present in tubular myelin. Immunologically identical or closely similar proteins are synthesized by Clara cells and secreted from granules which appear not to contain lipid. The role of these proteins in bronchiolar function is unknown.  相似文献   

3.
The pulmonary surfactant apoprotein with a reduced denatured molecular mass of 26-38 kDa (PSP-A) has recently been identified as an inhibitor of surfactant phospholipid secretion by isolated rat alveolar type II cells. We have investigated some of the structural determinants of PSP-A that are relevant to the inhibitory process. The PSP-A was isolated from rats given an intratracheal instillation of silica. The yield of PSP-A from silica-treated animals was 20-40-fold higher than that obtained from untreated animals. Reduction of PSP-A with 2-mercaptoethanol caused a reversible loss of biological activity that was restored by mild oxidation. Alkylation of the protein with excess iodoacetamide also led to inactivation, although titration with 5,5'-dithiobis-(2-nitrobenzoic acid) indicated that the protein initially contained no free sulfhydryl moieties. Neither alkylation nor reduction plus alkylation completely prevented the formation of oligomers as determined by gel permeation analysis. The apparent molecular mass of PSP-A at 4 degrees C in low ionic strength buffers was 1.6 megadaltons, and at 37 degrees C in normal ionic strength buffers was greater than 1.5 megadaltons. Removal of the oligosaccharide moiety with endoglycosidase F also had no effect upon biological activity. Five distinct monoclonal antibodies recognizing peptides epitopes on PSP-A were produced. All monoclonal antibodies exhibited similar affinity for PSP-A and recognized the delipidated and deglycosylated form. Four monoclonal antibodies reacted with epitopes on PSP-A that altered its function as an inhibitor. One monoclonal antibody was clearly ineffective at altering the activity of PSP-A. These results demonstrate that: 1) disulfide bonds are required for the activity of PSP-A, 2) disruption of disulfides does not prevent the formation of oligomeric forms of PSP-A, 3) the oligosaccharide moiety is not essential for biological activity, and 4) monoclonal antibodies can be used to map the epitopes responsible for biological activity.  相似文献   

4.
Alveolar type II cells secrete, internalize, and recycle pulmonary surfactant, a lipid and protein complex that increases alveolar compliance and participates in pulmonary host defense. Surfactant protein (SP) D, a collagenous C-type lectin, has recently been described as a modulator of surfactant homeostasis. Mice lacking SP-D accumulate surfactant in their alveoli and type II cell lamellar bodies, organelles adapted for recycling and secretion of surfactant. The goal of current study was to characterize the interaction of SP-D with rat type II cells. Type II cells bound SP-D in a concentration-, time-, temperature-, and calcium-dependent manner. However, SP-D binding did not alter type II cell surfactant lipid uptake. Type II cells internalized SP-D into lamellar bodies and degraded a fraction of the SP-D pool. Our results also indicated that SP-D binding sites on type II cells may differ from those on alveolar macrophages. We conclude that, in vitro, type II cells bind and recycle SP-D to lamellar bodies, but SP-D may not directly modulate surfactant uptake by type II cells.  相似文献   

5.
We used an immunohistochemical method to examine the localization of monoamine oxidase type B (MAOB) in rat liver. At the light microscopic level, MAOB was highly expressed in rat liver. It was intense around portal area, and weak around central area. All the hepatocytes examined had MAOB immunoreactivity. For the first time, using a double-labeling immunofluorescence histochemical method for laser microscopy, we report that no MAOB is found in endothelial cells, hepatic stellate cells, or Kupffer's cells. When examined under transmission electron microscopy, MAOB was localized to the mitochondrial outer membrane of hepatocytes. No apparent localization of MAOB was found in the rough endoplasmic reticulum, the crystal membrane of mitochondria, the nuclear envelope, or the plasma membrane.  相似文献   

6.
Thin sections of Lowicryl K4M-embedded materials were labeled with protein A-gold complex. Gold particles representing the antigen sites for cathepsin B were exclusively confined to lysosomes of each segment of the nephron. The heaviest labeling was noted in the lysosomes of the S1 segment of the proximal tubules. Labeling intensity varied considerably with the individual lysosomes. Lysosomes of the other tubular segments, such as the S2 and S3 segments of the proximal tubules, distal convoluted tubules, and collecting tubules were weakly labeled by gold particles. Quantitative analysis of labeling density also confirmed that lysosomes in the S1 segment have the highest labeling density and that approximately 65% of labeling in the whole renal segments, except for the glomerulus, was found in the S1 segment. These results indicate that in rat kidney the lysosomes of the S1 segment are a main location of cathepsin B. Further precise observations on lysosomes of the S1 segment revealed that apical vesicles, tubules, and vacuoles were devoid of gold particles, but when the vacuoles contained fine fibrillar materials, gold labeling was detectable in such vacuoles. As the lysosomal matrix becomes denser, the labeling density is increased. Some small vesicles around the Golgi complex were also labeled. These results indicate that the endocytotic apparatus including the apical vesicles, tubules, and vacuoles contains no cathepsin B. When the vacuoles develop into phagosomes, they acquire this enzyme to digest the absorbed proteins.  相似文献   

7.
Vitamin D-dependent calcium-binding protein (CaBP) was localized in intestinal tissue sections obtained from rats raised under three different nutritional conditions: a normal vitamin D-replete diet, a vitamin D-free diet followed by supplementation with vitamin D3, or a vitamin D-free diet without additional supplementation. An indirect immunoperoxidase technique, with immunocontrols, was used to visualize the specific sites of CaBP. CaBP was visualized only in the cytoplasm of absorptive cells. In the duodenum of animals raised on a normal diet, CaBP was present in absorptive cells from the upper crypt region to the villus tips. In the jejunum, many fewer absorptive cells contained CaBP, while in the ileum only random absorptive cells near the villus tips contained CaBP. In rats raised on a vitamin D-deficient diet then supplemented with vitamin D3, CaBP was present in cells at the full depth of the crypts and in absorptive cells along the total villus length in the duodenum. Rats raised on the same deficient diet but without supplementation with additional vitamin D exhibited no CaBP in crypt cells nor in absorptive cells more than half way up the villi. Absorptive cells higher on the villi contained immunoreactive CaBP but the intensity of immunostaining and number of CaBP-containing cells was markedly reduced compared to the vitamin D-supplemented group.  相似文献   

8.
Summary The cellular localization of the vitamin D-dependent calcium-binding protein (CaBP) in the duodenum of rat was studied using indirect immunofluorescence and immunoperoxidase staining methods. Specific positive reaction product, indicative of the presence of CaBP, was exclusively located within the villous part of the duodenal mucosa. Moreover, CaBP was detected mainly within the supranuclear region of the cytoplasm of absorptive cells and also at the level of their basal laminae. CaBP was not demonstrable either in the nuclei or associated with the brush border membrane of absorptive cells. Also, CaBP was neither detectable in goblet cells nor in sub-epithelial layers. When the specific anti-CaBP antiserum was replaced by nonimmune rabbit serum or when it was preabsorbed on a CaBP-Sepharose conjugate, no positive immunostaining was seen. Together with recent biochemical data our observations agree well with the view that CaBP may act as an intracellular buffer by protecting the cell against too high Ca2+ concentrations.  相似文献   

9.
Membrane fusion between the lamellar bodies and plasma membrane is an obligatory event in the secretion of lung surfactant. Previous studies have postulated a role for annexin A7 (A7) in membrane fusion during exocytosis in some cells including alveolar type II cells. However, the intracellular trafficking of A7 during such fusion is not described. In this study, we investigated association of endogenous A7 with lamellar bodies in alveolar type II cells following treatment with several secretagogues of lung surfactant. Biochemical studies with specific antibodies showed increased membrane-association of cell A7 in type II cells stimulated with agents that increase secretion through different signaling mechanisms. Immuno-fluorescence studies showed increased co-localization of A7 with ABCA3, the lamellar body marker protein. Because these agents increase surfactant secretion through activation of PKC and PKA, we also investigated the effects of PKC and PKA inhibitors, bisindolylmaleimideI (BisI) and H89, respectively, on A7 partitioning. Western blot analysis showed that these inhibitors prevented secretagogue-mediated A7 increase in the membrane fractions. These inhibitors also blocked increased co-localization of A7 with ABCA3 in secretagogue-treated cells, as revealed by immuno-fluorescence studies. In vitro studies with recombinant A7 showed phosphorylation with PKC and PKA. The cell A7 was also phosphorylated in cells treated with surfactant secretagogues. Thus, our studies demonstrate that annexin A7 relocates to lamellar bodies in a phosphorylation-dependent manner. We suggest that activation of protein kinase promotes phosphorylation and membrane-association of A7 presumably to facilitate membrane fusion during lung surfactant secretion.  相似文献   

10.
By immunocytochemical methods, the protein effectors of known intracellular signal molecules were demonstrated in the thyroid follicular cell and their localization investigated. Cyclic AMP protein kinase subunit RII was clearly located in the nucleus. Protein kinase subunits RI and C were in the cytosol and on the apical membrane. Cyclic GMP kinase and calmodulin were mostly found in the cytoplasm and at the apical membrane; they were poorly represented in the nucleus. The only membrane underlined by several markers was the apical membrane, i.e. the site of iodination, oxido reduction and H2O2 generation.  相似文献   

11.
Light microscopic immunocytochemistry was used to identify Paneth cells by their lysozyme content and to detect immunoglobulin antigens within a subpopulation of these cells. Antisera specific for the heavy chains of rat or human immunoglobulin A and for immunoglobulin light chain antigens produced specific staining of rat Paneth cells. The distribution of immunoglobulin staining varied between adjacent Paneth cells in the same crypt and between Paneth cells in adjacent crypts, as well as between Paneth cell populations of different animals. No staining of rat Paneth cells was detected using antisera specific for the heavy chain of immunoglobulins G or M. The specific staining of Paneth cells for immunoglobulin A and light chain antigens was blocked by absorption of each antiserum with its respective purified antigen. Absorption of these antisera with purified rat lysozyme did not affect staining and thereby eliminated the possibility of immunologic cross-reactivity between lysozyme and immunoglobulin antigens. It is suggested, in light of current concepts of Paneth cell function, that the immunoglobulin staining of Paneth cells may reflect their ability to phagocytize immunoglobulin A-coated microorganisms or immune complexes containing immunoglobulin A.  相似文献   

12.
Total PKC activity in BAEC incubated for 24 hrs in either 10% serum (FBS) or serum-deprived media (SDM) was similar. However, most of the activity (69%) in the FBS group was detected in the particulate fraction, while it was mainly in the cytosolic fraction (66%) in the SDM group. By confocal microscopy, there was diffuse cytoplasmic localization of the antibodies to the alpha and beta PKC isoforms. gamma PKC was not detected. Treatment of FBS or SDM cells with a phorbol ester resulted in an increase in PKC activity with translocation to the particulate fraction. PKC alpha immunofluorescence redistributed to the perinuclear region whereas PKC beta staining remained mostly cytosolic. Calphostin C, a PKC inhibitor, prevented the phorbol ester-induced increase in PKC activity and translocation.  相似文献   

13.
Pang  Qianqian  Liu  Chunyi  Qiao  Yulong  Zhao  Jian  Lam  Sin Man  Mei  Mei  Shui  Guanghou  Bao  Shilai  Li  Qiuling 《中国科学:生命科学英文版》2022,65(1):193-205
Science China Life Sciences - Pulmonary surfactant is a lipid-protein complex secreted by alveolar type II epithelial cells and is essential for the maintenance of the delicate structure of...  相似文献   

14.
Surfactant proteins (SPs) are important lipoprotein complex components, expressed in alveolar epithelial cells type II (AEC-II), and playing an essential role in maintenance of alveolar integrity and host defence. Because expressions of SPs are regulated by cyclic adenosine monophosphate (cAMP), we hypothesized that phosphodiesterase (PDE) inhibitors, influence SP expression and release. Analysis of PDE activity of our AEC-II preparations revealed that PDE4 is the major cAMP hydrolysing PDE in human adult AEC-II. Thus, freshly isolated human AEC-II were stimulated with two different concentrations of the PDE4 inhibitor roflumilast-N-oxide (3 nM and 1 μM) to investigate the effect on SP expression. SP mRNA levels disclosed a large inter-individual variation. Therefore, the experiments were grouped by the basal SP expression in low and high expressing donors. AEC-II stimulated with Roflumilast-N-oxide showed a minor increase in SP-A1, SP-C and SP-D mRNA mainly in low expressing preparations. To overcome the effects of different basal levels of intracellular cAMP, cyclooxygenase was blocked by indomethacin and cAMP production was reconstituted by prostaglandin E2 (PGE2). Under these conditions SP-A1, SP-A2, SP-B and SP-D are increased by roflumilast-N-oxide in low expressing preparations. Roflumilast-N-oxide fosters the expression of SPs in human AEC-II via increase of intracellular cAMP levels potentially contributing to improved alveolar host defence and enhanced resolution of inflammation.  相似文献   

15.
Alveolar type II cells express a high affinity receptor for pulmonary surfactant protein A (SP-A), and the interaction of SP-A with these cells leads to inhibition of surfactant lipid secretion. We have investigated the binding of native and modified forms of SP-A to isolated rat alveolar type II cells. Native and deglycosylated forms of SP-A readily competed with 125I-SP-A for cell surface binding. Alkylation of SP-A with excess iodoacetamide yielded forms of SP-A that did not inhibit surfactant lipid secretion and did not compete with 125I-SP-A for cell surface binding. Reductive methylation of SP-A with H2CO and NaCNBH3 yielded forms of SP-A with markedly reduced receptor binding activity that also exhibited significantly reduced capacity to inhibit lipid secretion. Modification of SP-A with cyclohexanedione reversibly altered cell surface binding and the activity of SP-A as an inhibitor of lipid secretion. Two monoclonal antibodies that block the function of SP-A as an inhibitor of lipid secretion completely prevented the high affinity binding of SP-A to type II cells. A monoclonal antibody that recognizes epitopes on SP-A but failed to block the inhibition of secretion also failed to completely attenuate high affinity binding to the receptor. Concanavalin A inhibits phospholipid secretion of type II cells by a mechanism that is reversed in the presence of excess alpha-methylmannoside. Concanavalin A did not block the high affinity binding of 125I-SP-A to the receptor. Neither the high affinity binding nor the inhibitor activity of SP-A was prevented by the presence of mannose or alpha-methylmannoside. The SP-A derived from humans with alveolar proteinosis is a potent inhibitor of surfactant lipid secretion but failed to completely displace 125I-SP-A binding from type II cells. From these data we conclude that: 1) cell surface binding activity of rat SP-A is directly related to its capacity to inhibit surfactant lipid secretion; 2) monoclonal antibodies directed against SP-A can be used to map binding domains for the receptor; 3) the lectin activity of SP-A against mannose ligands does not appear to be essential for cell surface binding; 4) concanavalin A does not compete with SP-A for receptor binding; and 5) the human SP-A derived from individuals with alveolar proteinosis exhibits different binding characteristics from rat SP-A.  相似文献   

16.
P0 protein, the dominant protein in peripheral nervous system myelin, was studied immunocytochemically in both developing and mature Schwann cells. Trigeminal and sciatic nerves from newborn, 7-d, and adult rats were processed for transmission electron microscopy. Alternating 1- micrometer-thick Epon sections were stained with paraphenylenediamine (PD) or with P0 antiserum according to the peroxidase-antiperoxidase method. To localize P0 in Schwann cell cytoplasm and myelin membranes, the distribution of immunostaining observed in 1-micrometer sections was mapped on electron micrographs of identical areas found in adjacent thin sections. The first P0 staining was observed around axons and/or in cytoplasm of Schwann cells that had established a 1:1 relationship with axons. In newborn nerves, staining of newly formed myelin sheaths was detected more readily with P0 antiserum than with PD. Myelin sheaths with as few as three lamellae could be identified with the light microscope. Very thin sheaths often stained less intensely and part of their circumference frequently was unstained. Schmidt-Lanterman clefts found in more mature sheaths also were unstained. As myelination progressed, intensely stained myelin rings became much more numerous and, in adult nerves, all sheaths were intensely and uniformly stained. Particulate P0 staining also was observed in juxtanuclear areas of Schwann cell cytoplasm. It was most prominent during development, then decreased, but still was detected in adult nerves. The cytoplasmic areas stained by P0 antiserum were rich in Golgi complex membranes.  相似文献   

17.
Adipocyte differentiation-related protein (ADrP) is an intrinsic lipid storage droplet protein that is highly expressed in lung. ADrP localizes to lipid storage droplets within lipofibroblasts, pulmonary cells characterized by high triacylglycerol, which is a precursor for surfactant phospholipid synthesis by alveolar type II epithelial (EPII) cells. The developmental pattern of ADrP mRNA and protein expression in lung tissue parallels triacylglycerol accumulation in rat lung. ADrP mRNA levels are relatively high in isolated lipofibroblasts, accounting for the high ADrP expression in lung. Isolated EPII cells, which do not store neutral lipids but derive them from lipofibroblasts, have low levels of ADrP mRNA expression. ADrP is found around lipid droplets in cultured lipofibroblasts, but not in EPII cells isolated from developing rat lung. After coculture with lipofibroblasts, EPII cells acquired ADrP, which associates with lipid droplets. Furthermore, (3)H-labeled triolein in isolated ADrP-coated lipid droplets is a tenfold better substrate for surfactant phospholipid synthesis by cultured EPII cells than (3)H-labeled synthetic triolein alone. Antibodies to ADrP block transfer of neutral lipid. These data suggest a role for ADrP in this novel mechanism for the transfer of lipid between lipofibroblasts and EPII cells.  相似文献   

18.
Proliferation and differentiation of epithelial cells are thought to be regulated by soluble factors in extracellular fluid and insoluble components of the extracellular matrix. We have examined the combined effects of soluble factors and an extracellular matrix (EHS matrix) on DNA synthesis, cell proliferation, and surfactant protein gene expression in primary cultures of alveolar type II epithelial cells. Cells on EHS matrix cultured in DMEM containing insulin, cholera toxin, EGF, aFGF, 5% rat serum, and 15-fold concentrated bronchoalveolar lavage fluid (D-GM) formed larger aggregates than cells cultured on the same substratum in DMEM containing 5% rat serum (D-5). Cells cultured in D-GM on EHS matrix incorporated more [3H]-thymidine than cells on the same substratum in D-5, with an eight-fold increase seen on day 4 of culture. This increase in [3H]-thymidine incorporation was accompanied by a labeling index of greater than 65% of the cells. Cell counts showed that exposure of type II cells on EHS matrix to D-GM resulted in increased cell number on day 4 of culture. [3H]-thymidine autoradiography combined with immunostaining with anti-cytokeratin, anti-SP-A, and anti-vimentin antibodies demonstrated that the proliferating cells were epithelial cells that contained SP-A. Type II cells cultured on plastic in D-GM also showed increased [3H]-thymidine incorporation compared to cells cultured in D-5. The level of [3H]-thymidine incorporation by cells on plastic, however, was significantly less than that seen in cells cultured in the same medium on EHS matrix. Type II cells cultured on EHS matrix in D-GM had a decreased abundance of mRNAs for SP-A and SP-C than cells cultured on EHS matrix in D-5 as determined by Northern analysis. This inhibition was reversed by switching from D-GM to D-5 on day 4 and culturing the cells for an additional 4 days. In contrast, SP-B mRNA was increased in response to D-GM. This increase was not reversed by switching from D-GM to D-5 on day 4. These results suggest that the interaction of soluble factors and extracellular matrix components has a strong influence on type II cell proliferation, which were partially associated with the reversible inhibition of lung tissue-specific protein mRNAs. Their dynamic interplay among the type II cell, the extracellular matrix, and growth factors may determine multicellular functions and play an important role in normal lung development and in the repair of the lung epithelium following injury.  相似文献   

19.
The role of ACTH in the synthesis of the adrenocortical hormones has been largely described. In order to investigate the localization of this peptide at the subcellular level of the adrenal glomerulosa and fasciculata cells, an immunocytological method was used. Rat adrenals were fixed and frozen. Ultrathin sections obtained by cryoultramicrotomy, were incubated with anti-beta (1-24) ACTH or anti-alpha (17-39) ACTH sera. The antigen-antibody reaction was detected by PAP complexes (revealed by 4-chloro-1-naphthol) or with protein A-colloidal gold or IgG-colloidal gold. The results obtained were the same whatever the antisera of the technique employed. All the cells of the adrenal zona glomerulosa and zona fasciculata were labelled. ACTH-like immunoreactivity in zona glomerulosa and zona fasciculata cells was observed at the plasma membrane level, in cytoplasmic matrix, mitochondria and nucleus (in the euchromatin close to the heterochromatin aggregations and, occasionally, associated with the nucleolus). No immunoreactivity was observed when non-immune serum or anti-ACTH serum preincubated with ACTH were used, nor there was any modification of the immunocytochemical reaction when anti-ACTH serum incubated with heterologous antigens was employed. These data, demonstrate the presence of endogenous ACTH in both adrenal glomerulosa and fasciculata cells, and suggest that the peptide is internalized after binding to the plasma membrane.  相似文献   

20.
We used high-resolution immunocytochemistry on ultrathin frozen sections labeled with colloidal gold to study the subcellular distribution of the asialoglycoprotein receptor in rat liver. The receptor was localized along the entire hepatocyte plasma membrane, including the bile capillary membrane, but was scarce intracellularly. Sinusoidal lining (Kupffer) cells and blood cells showed no immunoreactivity. In liver cells of rats injected with 1 to 100 micrograms of asialoorosomucoid (ASOR) 2-15 min before tissue fixation, endocytotic internalization of receptors at the blood front was conspicuous. At all times in this interval, receptor was present in approximately 100-nm vesicles and larger vacuoles adjacent to the sinusoidal plasma membrane. No other significant intracellular receptor was noted during the 15-min exposure to ASOR; in particular, lysosomes and Golgi complex were not labeled. Our observations, in combination with data from the literature which demonstrate that, under these conditions, the ligand is transferred further to the Golgi complex-lysosome region, suggest that the receptor and ligand are dissociated in the vicinity of the plasma membrane, after which the receptor rapidly returns to the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号