首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
永磁体涡流损耗的分析   总被引:1,自引:0,他引:1  
《微电机》2015,(6)
表面式永磁电机永磁体直接与气隙接触,变频供电时产生的较大含量谐波将在永磁体内产生一定的涡流损耗,且由于转子散热较差,将导致永磁体温升较高,容易造成永磁体发生不可逆去磁风险。因此对永磁体涡流损耗的研究有其必要性与重要性。文中针对影响永磁体涡流损耗较大的气隙长度、定子槽口宽度、气隙长度与槽口宽度的配合、永磁体削角等进行分析,通过合理选择电机结构尺寸来降低永磁体涡流损耗,并利用三维有限元法与解析法验证计算规律的正确性。  相似文献   

2.
变压器箱体涡流损耗的三维有限元分析   总被引:2,自引:0,他引:2  
建立了电力变压器漏磁场及箱体涡流损耗的计算模型,计算了变压器箱体的涡流损耗分布,提出了减少箱体涡流损耗的电磁屏蔽和磁屏蔽方法.  相似文献   

3.
大型电力变压器中油箱涡流损耗占其杂散损耗绝大部分,易使变压器产生局部过热,烧损变压器。因此,为了有效降低油箱涡流损耗,提出采用ANSYS软件三维有限元法对变压器进行仿真计算,以求得到其油箱漏磁和涡流损耗分布及大小,然后采取相应的防控措施,即在变压器加入磁屏蔽。经仿真计算分析,在变压器加入磁屏蔽有利于降低油箱中的漏磁密度、减小损耗,同时也说明采用该方法计算损耗准确、可行。  相似文献   

4.
二维有限元方法具有计算速度快,精度高,结果收敛快并且波动小的优点。永磁同步电机,特别是高速和大功率电机的永磁体涡流损耗不可忽略,而永磁体允许温升有限,高温容易引起退磁。在电机设计时考虑永磁体的温升十分重要。本文采用二维有限元方法来估算三维条件下的永磁体涡流损耗,并提出一种估算的方法。以普瑞斯04电动汽车电机为例,仿真结果表明此方法实用有效。  相似文献   

5.
永磁同步电机永磁体受限于热约束,无法在温度较高的环境下运行,故需减少永磁体上的电涡流损耗,从而降低永磁体上的温度。针对使用有限元法对永磁体电涡流损耗估算时间较长,以及使用解析法估算时难以达到与有限元法相同的精度,采用混合有限元解析法估算永磁体上的电涡流损耗。结合电涡流的反作用,在模拟电机旋转时,无需重复划分三角形区域;使用MATLAB软件仿真模拟,将混合有限元解析法与Galerkin有限元法对比,减少三角形区域划分的个数。由此验证了永磁体上电涡流损耗符合端部效应以及集肤效应的特征,在保证精度的同时,减少了仿真的时间。  相似文献   

6.
永磁球形电动机永磁体涡流损耗分析   总被引:1,自引:0,他引:1  
永磁球形电动机的磁极呈球面锥体结构,各定子线圈相互独立分布于定子球壳内表面,针对这些特性,提出了一种计算永磁球形电动机永磁体涡流损耗的三维解析模型。该模型将双重傅里叶级数法与矢量磁位解析法相结合,首先利用双重傅里叶级数法求得定子内径处电流密度分布,继而将其作为边界条件,借助三维拉普拉斯方程,获得了矢量磁位的特解,最后推导得到了永磁球形电动机永磁体涡流损耗的解析表达式。该模型充分考虑到了时间谐波与空间谐波对涡流损耗的影响,并分析了不同的电机结构参数对永磁体涡流损耗的影响。将解析法与有限元法所得结果进行了比较,结果一致,证明了该解析模型的有效性。  相似文献   

7.
针对二维有限元法计算永磁体涡流损耗时无法计及永磁体涡流损耗轴向分布的不均匀,以及三维有限元的计算过程时间过长,研究了一种基于图像理论的三维解析法用于计算永磁电机磁体的涡流损耗。该方法将永磁体三维涡流场的边界条件与图像相结合,并考虑了定子开槽效应,磁体内部的径向和切向场变化以及不同源谐波的相互作用,同时计及了相电流引起的时间谐波。通过与三维电机有限元模型进行结果比较,验证该方法的准确性及可行性。  相似文献   

8.
高频轴向磁通永磁电机永磁体涡流损耗三维解析模型   总被引:1,自引:0,他引:1  
针对现有二维解析模型在计算轴向磁通永磁电机永磁体涡流损耗存在精度不足的问题,该文提出一种能够精确计算该类电机永磁体涡流损耗的新型三维解析模型。该模型利用精确子域法和电阻网络模型,能够同时考虑定子开槽、定子谐波电流、涡流反作用和涡流三维分布的影响。利用有限元法验证了精确子域模型计算得到的空载和电枢磁场分布,并在理想空载下,验证了解析模型永磁体表面涡流密度和永磁体涡流损耗值,分析电机在高频运行下涡流反作用对永磁体涡流损耗的影响。最后,对1台7kW、4000rpm的轴向磁通永磁电机进行空载脉宽调制(pulsewidthmodulated,PWM)电压供电实验和空载正弦波电压供电实验,得到因PWM谐波电流引起的永磁体涡流损耗,将实验结果,有限元结果与解析结果作对比,验证了该解析模型的正确性。  相似文献   

9.
永磁电机永磁体涡流损耗的研究进展   总被引:1,自引:0,他引:1  
近年来,永磁电机因其结构简单、运行可靠、效率高等优点发展迅速,在许多领域得到广泛研究和应用。但稀土材料的永磁电机永磁体的涡流损耗一直是其设计的关键性问题。分别概述了有限元法、等效磁路法和解析法在永磁体涡流损耗分析中的起源、发展演变和最新应用情况,对比分析了各自的优缺点,并介绍了解析法在永磁球形电机永磁体涡流损耗计算中的应用,最后总结展望了3类计算方法的主要发展方向。  相似文献   

10.
本文应用有限元法求解电机在不对称运行时转子涡流损耗的分布。完整地考虑了电机内部的复杂结构,建立了在半周期条件下,电机转子涡流损耗的汁算模型。应用Fortran语言编写了计算程序,以QFQS-200-2型电机为实例,得到了转子锻件和槽楔上的涡流损耗分布曲线。  相似文献   

11.
针对永磁电机的时间谐波和空间谐波引起电机中永磁体涡流损耗增加的问题,本文搭建了永磁体谐波磁特性测试系统.分析了基波叠加不同谐波次数、含量和相角之后磁通密度B的波形变化规律,测量了钕铁硼(NdFeB)永磁体在不同谐波激励下的动态磁滞回线,研究了谐波次数、含量和相角三个因素对钕铁硼涡流损耗的影响,并对比了钕铁硼、钐钴(Sm2Co17)、铝镍钴(AlNiCo)三种永磁材料在谐波磁场下的磁特性.结果证明谐波次数和含量对永磁体涡流损耗具有较大影响,谐波相角对永磁体涡流损耗无明显影响.研究结果对永磁电机的电磁优化和设计具有重要的参考价值.  相似文献   

12.
由于永磁体中存在涡流损耗,这些损耗会以热量的形式散发出来,使盘式永磁同步电机(DPMSM)内部温度升高。当温度过高时,会引起电机运行性能降低。故针对永磁体涡流损耗进行深入研究,对DPMSM的性能提高及优化设计具有重要意义。利用Maxwell三维电磁场有限元分析软件建立电机有限元模型,在三相正弦电流源驱动下求解电机永磁体电磁场分布;为减小永磁体涡流损耗,对永磁体进行不同方向分割,并对不同方向分割进行仿真对比,得出横向分割为3块效果最佳;在利用电磁屏蔽原理减小涡流损耗时,先对其可靠性进行验证,后利用MATLAB曲线拟合得出屏蔽层厚度的最优值。  相似文献   

13.
应用于飞轮储能的高速永磁同步电机涡流损耗的研究对于电机可靠性具有重要意义。通过有限元仿真分别计算永磁体和护套中的涡流损耗,并重点研究高速电机护套材料电导率的不同对于高速电机转子涡流损耗的影响,以及永磁体与护套电导率的比值对转子总损耗的影响。结果表明:在选择护套时并不是导电率越小越好,只有当小于某个特定电导率时,总损耗才能降低;并且护套材料的电导率越大,其对永磁体中的涡流损耗的屏蔽效果越明显,护套材料电导率的大小,对损耗在护套和永磁体中的分布起了一定的分配作用。  相似文献   

14.
永磁同步电机永磁体分块对涡流损耗的影响分析   总被引:1,自引:0,他引:1       下载免费PDF全文
逆变器供电的永磁同步电机(PMSM)中电子器件的高频开关会产生高频的电流时间谐波,进而引起永磁体涡流损耗的显著增加。给出了一种考虑电流时间谐波的永磁体涡流损耗计算的解析式,详细分析了永磁体尺寸和透入深度与涡流损耗之间的关系,并通过一个理想的3D模型进行验证。以1台逆变器供电的48槽8极PMSM为例进行涡流损耗仿真计算,结果表明:永磁体合理的分块数可以有效减少涡流损耗。  相似文献   

15.
计算潜水电机端部漏磁场在端部构件中产生的涡流损耗是准确计算潜水电机端部温升的前提,也是潜水电机安全运行的关键问题之一。本文针对单层同心式双平面2 800kW充水式潜水电机,对端部涡流损耗进行了研究。采用三维有限元方法建立大型充水式潜水电机端部磁场的数学模型,选定定子绕组、压圈等端部导电构件为涡流区域,冷却水和非导电材料所在区域为非涡流区域,为考虑机壳和端盖的涡流效应,对机壳和端盖面施加阻抗边界条件。在此基础上,建立涡流损耗数学模型,采用有限元方法计算定子端部铁心、定子压圈、定子端部绕组等构件的涡流损耗分布,分析端部结构参数对涡流损耗的影响。所得结论,可为工程实际问题的解决提供一定的帮助,并对端部绕组结构的优化设计和提高电机运行可靠性等方面提供参考。  相似文献   

16.
针对当前电机产业的发展趋势,永磁同步电机得到广泛应用,并且电机单机容量逐渐增大,致使电机内部温升不断增大,过高的温升严重影响了电机的可靠运行。利用Ansys有限元软件的热分析功能对永磁同步电机进行仿真,分析了永磁体涡流损耗对温度场的影响,证明了永磁体涡流损耗的重要性。  相似文献   

17.
永磁体分割可有效降低表贴式永磁同步电机(SPMSM)永磁体涡流损耗,且对电机性能影响最小。分析了永磁体轴向分割和圆周向分割与永磁体涡流损耗的关系,推导了SPMSM永磁体涡流损耗解析解。影响永磁体涡流损耗的因素,包括气隙磁密、齿谐波频率(转速和槽数)、齿距、永磁体电阻率和永磁体磁导率等。根据分析结果可知,永磁体圆周向分割对降低永磁体涡流损耗起主要作用,并通过试验验证了解析解的准确性。  相似文献   

18.
《微电机》2015,(7)
准确计算永磁体涡流损耗是永磁同步电机设计的关键问题之一。采用解析法分析了不同电流谐波产生的永磁体涡流损耗随轴向分段数的变化趋势。建立SVPWM控制系统仿真模型和3D有限元模型,对一台400k W表贴式永磁同步电动机的永磁体涡流损耗进行了研究。研究结果表明:随着轴向分段数的增加,由开关频率等高次谐波电流产生的永磁体涡流损耗呈现先增大后减小的变化趋势;对于定子开槽引起的永磁体涡流损耗,增加轴向分段对其具有抑制作用;对于SVPWM控制方式,应尽量减小轴向分段数以降低永磁体涡流损耗。  相似文献   

19.
考虑涡流反作用的永磁体涡流损耗解析计算   总被引:1,自引:0,他引:1  
推导了一种新型表面式无金属护套永磁同步电机永磁体涡流损耗解析模型,该模型同时考虑涡流反作用、开槽引起的磁导谐波和涡流分布不均匀三种因素,可以计算任意定子电流波形的表面式无金属护套永磁同步电机的永磁体涡流损耗,并能分析任意次数时空谐波产生的永磁体涡流损耗。采用所推导的解析模型研究影响永磁体涡流损耗的因素,包括调制比、载波比和气隙长度。调制比和载波比的增加减小了电流时间谐波幅值二次方和,因此降低了永磁体涡流损耗;气隙长度的增加,由于削弱了谐波电枢反应而降低了永磁体涡流损耗。通过对电机的实验分析和有限元仿真,验证了解析计算的正确性和规律的适用性。  相似文献   

20.
准确求解分数槽永磁电机电枢磁场下的永磁体涡流损耗解析解,探究谐波涡流损耗随绕组结构的变化规律是改进绕组结构抑制涡流损耗的关键。针对此问题,该文提出四层绕组电流密度建模方法,实现对三相/双三相、双层/四层绕组结构的建模。基于现有的子域模型,将四层绕组结构的槽身区域划分为上层绕组和下层绕组区域,增加上层绕组与下层绕组交界处的边界条件,确定各子域磁场的谐波系数。通过设计瞬态电枢磁场求解程序,建立涡流损耗解析模型。以四台仅绕组结构不同的10极12槽永磁电机为例,利用有限元仿真验证了损耗模型的精确性。基于该损耗模型,探究了谐波涡流损耗随绕组相数和层数的变化规律,并使用磁动势从机理上分析该规律,为改进绕组结构抑制涡流损耗的研究方向提供一些思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号