首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The multimode resource-constrained project scheduling problem (MRCPSP) deals with the scheduling of a set of projects with alternative requirements of renewable and non-renewable resources. Solutions to the MRCPSP usually consider objectives in terms of cost and time. However, social objectives related with the workforce may impact the performance of projects and affect program sustainability goals. To account for this new social input, this paper extends the MRCPSP and proposes a new multiobjective mixed-integer programming model. The proposed solution method uses an a priori lexicographic ordering of the objectives, followed by an ?-constraints approach. The model is illustrated with a case study of a construction program.  相似文献   

2.
In service organizations, heterogeneity in workforce skills can lead to variation in end-product/service quality. The multi-mode, resource-constrained, project scheduling problem (MRCPSP), which assumes similar skills among resources in a given resource pool, accounts for differences in quality levels of individuals by assigning different activity durations depending on the skill level used. This approach is often inadequate to model the problem type investigated here. Using typical projects from the customer training division of a large telecommunications company (which motivated this research), a labor assignment problem using a successive work–time concept is formulated and solved using integer programming optimization procedures. The setting represents a multiple-project environment where projects are separate and independent, but require the same renewable resource mix for their completion. The paper demonstrates how the output of the model can be used to identify bottlenecks (or critical resource skills), and also demonstrates how cross-training the appropriately skilled groups or individuals can increase throughput. The approach guides decision-making concerning which workers to cross-train in order to extract the greatest benefits from worker-flexibility.  相似文献   

3.
We consider the multi-mode resource-constrained project scheduling problem (MRCPSP), where a task has different execution modes characterized by different resource requirements. Due to the nonrenewable resources and the multiple modes, this problem is NP-hard; therefore, we implement an evolutionary algorithm looking for a feasible solution minimizing the makespan.  相似文献   

4.
在项目调度过程中,活动工期应根据项目截止工期以及资源供给情况进行合理设置,而在传统的资源受限项目调度问题(RCPSP)中,活动的工期往往是已知且固定的,这在一定程度上限制了项目调度的灵活性。多模式下的项目调度方式虽然弥补了这一缺点,但其提供的工期-资源组合种类固定且有限,并不一定能保证包含最优的工期-资源组合。本文将活动工期作为项目调度问题的决策变量,允许其在一定范围内取值。这种柔性工期调度方式虽然增加了项目调度难度,但提高了项目调度灵活性,同时可以起到压缩项目完工时间的作用。为验证柔性工期调度方式对项目工期和成本的影响,本文建立了工期-成本双目标权衡优化模型,设计了两阶段嵌套算法(NSGAⅡ-RS)对其求解,实验证明,柔性工期调度策略是一种鲁棒性较好的项目完工时间压缩策略。  相似文献   

5.
In resource-constrained project scheduling problems, resources are typically classified as being either renewable, non-renewable, or doubly-constrained. A new resource classification, recyclable, is introduced. Notation and a generalized problem formulation are developed for resource-constrained job scheduling problems where resources are recyclable. This foundation is then used for studying the single-machine scheduling problem with tooling constraints. For a given set of jobs, the problem is to find the job sequence, tool type quantities, and tool recycling schedule such that the sum of job completion times and quantity of tools allocated are both minimized. Two solution approaches are developed, and examples are used to compare and contrast the approaches. The results indicate that the ‘traditional’ job scheduling approach (i.e. schedule jobs first, then tools) can lead to sub-optimal solutions. Furthermore, by scheduling jobs and tools simultaneously, it may be possible to attain a given level of performance with fewer tools.  相似文献   

6.
Simulated Annealing for Multi-Mode Resource-Constrained Project Scheduling   总被引:4,自引:0,他引:4  
In this paper the resource-constrained project scheduling problem with multiple execution modes for each activity and the makespan as the minimization criterion is considered. A simulated annealing approach to solve this problem is presented. The feasible solution representation is based on a precedence feasible list of activities and a mode assignment. A comprehensive computational experiment is described, performed on a set of standard test problems constructed by the ProGen project generator. The results are analyzed and discussed and some final remarks are included.  相似文献   

7.
In this paper we present a genetic algorithm for the multi-mode resource-constrained project scheduling problem (MRCPSP), in which multiple execution modes are available for each of the activities of the project. We also introduce the preemptive extension of the problem which allows activity splitting (P-MRCPSP). To solve the problem, we apply a bi-population genetic algorithm, which makes use of two separate populations and extend the serial schedule generation scheme by introducing a mode improvement procedure. We evaluate the impact of preemption on the quality of the schedule and present detailed comparative computational results for the MRCPSP, which reveal that our procedure is amongst the most competitive algorithms.  相似文献   

8.
A new exact algorithm that solves the Resource Availability Cost Problem (RACP) in project scheduling is shown to yield a significant improvement over the existing algorithm in the literature. The new algorithm consists of a hybrid method where an initial feasible solution is found heuristically. The branching scheme solves a Resource-Constrained Project Scheduling Problem (RCPSP) at each node where the resources of the RACP are fixed. The knowledge of previously solved RCPSPs is used to produce cuts in the search tree. A worst-case-performance theorem is established for this new algorithm. Experiments are performed on instances adapted from the PSPLIB database. The new algorithm can be used to minimize any resource availability cost problem once a procedure for the underlying resource-constrained problem is available.  相似文献   

9.
Project Scheduling with Multiple Modes: A Genetic Algorithm   总被引:10,自引:0,他引:10  
In this paper we consider the resource-constrained project scheduling problem with multiple execution modes for each activity and makespan minimization as objective. We present a new genetic algorithm approach to solve this problem. The genetic encoding is based on a precedence feasible list of activities and a mode assignment. After defining the related crossover, mutation, and selection operators, we describe a local search extension which is employed to improve the schedules found by the basic genetic algorithm. Finally, we present the results of our thorough computational study. We determine the best among several different variants of our genetic algorithm and compare it to four other heuristics that have recently been proposed in the literature. The results that have been obtained using a standard set of instances show that the new genetic algorithm outperforms the other heuristic procedures with regard to a lower average deviation from the optimal makespan.  相似文献   

10.
In this paper, we investigate a resource-constrained project scheduling problem with flexible resources. This is an \(\mathcal {NP}\)-hard combinatorial optimization problem that consists of scheduling a set of activities requiring specific resource units of several skills. The goal is to minimize the makespan of the project. We propose a biased random-key genetic algorithm for computing feasible solutions for the referred problem. We study different decoding mechanisms: an already existing method in the literature, a new adapted serial scheduling generation scheme, and a combination of both. The new procedure is tested using a set of benchmark instances of the problem. The results provide strong evidence that the new heuristic is robust and yields high-quality feasible solutions.  相似文献   

11.
This study emphasizes that project scheduling and material ordering (time and quantity of an order) must be considered simultaneously to minimize the total cost, as setting the material ordering decisions after the project scheduling phase leads to non-optimal solutions. Hence, this paper mathematically formulates the model for the multi-mode resource-constrained project scheduling with material ordering (MRCPSMO) problem. In order to be more realistic, bonus and penalty policies are included for the project. The objective function of the model consists of four elements: the material holding cost, the material ordering cost, the bonus paid by the client and the cost of delay in the project completion. Since MRCPSMO is NP-hard, the paper proposes three hybrid meta-heuristic algorithms called PSO-GA, GA-GA and SA-GA to obtain near-optimal solutions. In addition, the design of experiments and Taguchi method is used to tune the algorithms’ parameters. The proposed algorithms consist of two components: an outside search, in which the algorithm searches for the best schedule and mode assignment, and the inside search, which determines the time and quantity of orders of the nonrenewable resources. First, a comparison is made for each individual component with the exact or best solutions available in the literature. Then, a set of standard PROGEN test problems is solved by the proposed hybrid algorithms under fixed CPU time. The results reveal that the PSO-GA algorithm outperforms both GA-GA and SA-GA algorithms and provides good solutions in a reasonable time.  相似文献   

12.
We formulate the resource-constrained project scheduling problem as a satisfiability problem and adapt a satisfiability solver for the specific domain of the problem. Our solver is lightweight and shows good performance both in finding feasible solutions and in proving lower bounds. Our numerical tests allowed us to close several benchmark instances of the RCPSP that have never been closed before by proving tighter lower bounds and by finding better feasible solutions. Using our method we solve optimally more instances of medium and large size from the benchmark library PSPLIB and do it faster compared to any other existing solver.  相似文献   

13.
Intelligent optimization refers to the promising technique of integrating learning mechanisms into (meta-)heuristic search. In this paper, we use multi-agent reinforcement learning for building high-quality solutions for the multi-mode resource-constrained project scheduling problem (MRCPSP). We use a network of distributed reinforcement learning agents that cooperate to jointly learn a well-performing constructive heuristic. Each agent, being responsible for one activity, uses two simple learning devices, called learning automata, that learn to select a successor activity order and a mode, respectively. By coupling the reward signals for both learning tasks, we can clearly show the advantage of using reinforcement learning in search. We present some comparative results, to show that our method can compete with the best performing algorithms for the MRCPSP, yet using only simple learning schemes without the burden of complex fine-tuning.  相似文献   

14.
This paper presents results from an extensive computational study of the multi-mode resource-constrained project scheduling problem when activities can be split during scheduling under situations where resources may be temporarily not available. All resources considered are renewable and each resource unit may not be available at all times due to resource vacations, which are known in advance, and assignment to other finite duration activities. A designed experiment is conducted that investigates project makespan improvement when activity splitting is permitted in various project scenarios, where different project scenarios are defined by parameters that have been used in the research literature. A branch-and-bound procedure is applied to solve a number of small project scheduling problems with and without activity splitting. The results show that, in the presence of resource vacations and temporary resource unavailability, activity splitting can significantly improve the optimal project makespan in many scenarios, and that the makespan improvement is primarily dependent on those parameters that impact resource utilization.  相似文献   

15.
Propositional satisfiability (SAT) has attracted considerable attention recently in both Computer Science and Artificial Intelligence, and a lot of algorithms have been developed for solving SAT. Each SAT solver has strength and weakness, and it is difficult to develop a universal SAT solver which can efficiently solve a wide range of SAT instances. We thus propose parallel execution of SAT solvers each of which individually solves the same SAT instance simultaneously. With this competitive approach, a variety of SAT instances can be solved efficiently in average. We then consider a cooperative method for solving SAT by exchanging lemmas derived by conflict analysis among different SAT solvers. To show the usefulness of our approach, we solve SATLIB benchmark problems, planning benchmark problems as well as the job-shop scheduling problem with good performance. The system has been implemented in Java with both systematic and stochastic solvers.  相似文献   

16.
In the last few decades, several effective algorithms for solving the resource-constrained project scheduling problem have been proposed. However, the challenging nature of this problem, summarised in its strongly NP-hard status, restricts the effectiveness of exact optimisation to relatively small instances. In this paper, we present a new meta-heuristic for this problem, able to provide near-optimal heuristic solutions for relatively large instances. The procedure combines elements from scatter search, a generic population-based evolutionary search method, and from a recently introduced heuristic method for the optimisation of unconstrained continuous functions based on an analogy with electromagnetism theory. We present computational experiments on standard benchmark datasets, compare the results with current state-of-the-art heuristics, and show that the procedure is capable of producing consistently good results for challenging instances of the resource-constrained project scheduling problem. We also demonstrate that the algorithm outperforms state-of-the-art existing heuristics.  相似文献   

17.
This paper deals with the generalized resource-constrained project scheduling problem (GRCPSP) which extends the well-known resource-constrained project scheduling problem (RCPSP) by considering job specific release and due dates, non-negative minimum start-to-start time lags as well as time-varying resource availabilities. The structure of the project is represented by an acyclic network diagram. Though the extensions are of high practical importance, only a few exact solution procedures have been presented in the literature so far. Therefore, a new exact procedure PROGRESS is developed which includes new dominance rules as well as enhancements of existing ones. For evaluating the efficiency experimentally, new GRCPSP instances with 30 and 60 jobs are considered which extend the standard benchmark sets for the RCPSP generated by ProGen. PROGRESS shows superior performance when applied to the GRCPSP and is also very competitive in comparison to approaches proposed for the RCPSP.  相似文献   

18.
在供应链环境下研究跨组织的资源受限项目调度问题,从项目调度整体效用最大化角度,考虑工期、成本和资源均衡对项目调度的影响。构建并剖析供应链环境下跨组织的资源受限项目调度模型,利用正态云模型中云滴的随机性与稳定性的特征改进遗传算法中交叉算子与变异算子的设置方式,并对模型进行数据模拟和算例分析。结果表明,以工期-成本-资源均衡为优化目标,不仅可实现供应链环境下跨组织的资源受限项目调度的效用最大化,且可缩短项目工期、降低成本并提高资源的利用率。  相似文献   

19.
This paper presents a priority rule-based heuristic for the multi-mode resource-constrained project scheduling problem with the splitting of activities around unavailable resources allowed. All resources considered are renewable and each resource unit may not be available at all times due to resource vacations, which are known in advance. A new concept called moving resource strength is developed to help identify project situations where activity splitting is likely to be beneficial during scheduling. The moving resource strength concept is implemented in priority rule-based heuristics to control activity splitting when scheduling. Multiple comparisons of the performance of combination of activity–mode priority rules used in the heuristics are provided. Computational experiments demonstrate the effectiveness of the heuristic in reducing project makespan, and minimizing activity splitting.  相似文献   

20.
We consider single machine scheduling problems with a non-renewable resource. These types of problems have not been intensively investigated in the literature so far. For several problems of these types with standard objective functions (namely the minimization of makespan, total tardiness, number of tardy jobs, total completion time and maximum lateness), we present some complexity results. Particular attention is given to the problem of minimizing total tardiness. In addition, for the so-called budget scheduling problem with minimizing the makespan, we present some properties of feasible schedules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号