首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Electron paramagnetic resonance dosimetry with tooth enamel has been proved to be a reliable method to determine retrospectively exposures from photon fields with minimal detectable doses of 100 mGy or lower, which is lower than achievable with cytogenetic dose reconstruction methods. For risk assessment or validating dosimetry systems for specific radiation incidents, the relevant dose from the incident has to be calculated from the total absorbed dose in enamel by subtracting additional dose contributions from the radionuclide content in teeth, natural external background radiation and medical exposures. For calculating organ doses or evaluating dosimetry systems the absorbed dose in enamel from a radiation incident has to be converted to air kerma using dose conversion factors depending on the photon energy spectrum and geometry of the exposure scenario. This paper outlines the approach to assess individual dose contributions to absorbed dose in enamel and calculate individual air kerma of a radiation incident from the absorbed dose in tooth enamel.  相似文献   

2.
Boron neutron capture therapy (BNCT) is a bimodal radiation therapy used primarily for highly malignant gliomas. Tissue-equivalent proportional counter (TEPC) microdosimetry has proven an ideal dosimetry technique for BNCT, facilitating accurate separation of the photon and neutron absorbed dose components, assessment of radiation quality and measurement of the BNC dose. A miniature dual-TEPC system has been constructed to facilitate microdosimetry measurements with excellent spatial resolution in high-flux clinical neutron capture therapy beams. A 10B-loaded TEPC allows direct measurement of the secondary charged particle spectrum resulting from the BNC reaction. A matching TEPC fabricated from brain-tissue-equivalent plastic allows evaluation of secondary charged particle spectra from photon and neutron interactions in normal brain tissue. Microdosimetric measurements performed in clinical BNCT beams using these novel miniature TEPCs are presented, and the advantages of this technique for such applications are discussed.  相似文献   

3.
Neutron therapy beams are obtained by accelerating protons or deuterons on Beryllium. These neutron therapy beams present comparable dosimetric characteristics as those for photon beams obtained with linear accelerators; for instance, the penetration of a p(65)+Be neutron beam is comparable with the penetration of an 8 MV photon beam. In order to be competitive with conventional photon beam therapy, the dosimetric characteristics of the neutron beam should therefore not deviate too much from the photon beam characteristics. This paper presents a brief summary of the neutron beams used in radiotherapy. The dosimetry of the clinical neutron beams is described. Finally, recent and future developments in the field of physics for neutron therapy is mentioned. In the last two decades, a considerable number of centres have established radiotherapy treatment facilities using proton beams with energies between 50 and 250 MeV. Clinical applications require a relatively uniform dose to be delivered to the volume to be treated, and for this purpose the proton beam has to be spread out, both laterally and in depth. The technique is called 'beam modulation' and creates a region of high dose uniformity referred to as the 'spread-out Bragg peak'. Meanwhile, reference dosimetry in these beams had to catch up with photon and electron beams for which a much longer tradition of dosimetry exists. Proton beam dosimetry can be performed using different types of dosemeters, such as calorimeters, Faraday cups, track detectors and ionisation chambers. National standard dosimetry laboratories will, however, not provide a standard for the dosimetry of proton beams. To achieve uniformity on an international level, the use of an ionisation chamber should be considered. This paper reviews and summarises the basic principles and recommendations for the absorbed dose determination in a proton beam, utilising ionisation chambers calibrated in terms of absorbed dose to water. These recommendations are based on the recent IAEA TRS398 Code of Practice: 'Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water'.  相似文献   

4.
Accurate dosimetry is a prerequisite for reliable comparisons between radiobiological irradiation experiments. Parameters affecting the determination of absorbed dose to cells in the shape of a small cell pellet in a centrifuge tube, irradiated by 28 keV mono-energetic photons from a synchrotron, were investigated. Thermoluminescent dosimeter (TLD), diode and ion chambers were utilized to monitor the irradiations. The distribution of the absorbed dose and such parameters as scatter, attenuation and interface dosimetry in the target, which influence the dose, were studied. A method for inter-calibrations of two different calibration sources by using TLD and TLD readers is given. Characteristics of the TLD, that is, fading, supralinearity, energy response, self-attenuation and mini-dosimetry were considered for the dosimetry. A method for correcting photon fluence attenuation in cylindrical TLDs is presented. The study shows that the absorbed dose to cells irradiated at low photon energy at a synchrotron irradiation facility can, using accurate dosimetry protocol, be correctly and reproducibly determined.  相似文献   

5.
Radiation protection dosimetry in radiation fields behind the shielding of high-energy accelerators such as CERN is a challenging task and the quantitative understanding of the detector response used for dosimetry is essential. Measurements with ionisation chambers are a standard method to determine absorbed dose (in the detector material). For applications in mixed radiation fields, ionisation chambers are often also calibrated in terms of ambient dose equivalent at conventional reference radiation fields. The response of a given ionisation chamber to the various particle types of a complex high-energy radiation field in terms of ambient dose equivalent depends of course on the materials used for the construction and the chamber gas used. This paper will present results of computational studies simulating the exposure of high-pressure ionisation chambers filled with different types of gases to the radiation field at CERN's CERN-EU high-energy reference field facility. At this facility complex high-energy radiation fields, similar to those produced by cosmic rays at flight altitudes, are produced. The particle fluence and spectra calculated with FLUKA Monte Carlo simulations have been benchmarked in several measurements. The results can be used to optimise the response of ionisation chambers for the measurement of ambient dose equivalent in high-energy mixed radiation fields.  相似文献   

6.
A compact and transportable water calorimeter has been developed and extensively tested in the intensive, collimated neutron field of the PTB. It has been applied for absorbed dose to water measurements in the neutron therapy field of the University of Essen, in the proton therapy fields of the HMI in Berlin and at the iThemba therapy centre near Cape Town, South Africa, as well as in the (12)C-beam of the therapy facility at GSI in Darmstadt, Germany. Absolute dosimetry with relative standard uncertainties of less than 1.8% was achieved in all radiation fields. The results obtained using the water calorimeter are compared with the ionisation chamber measurements in the same radiation fields. The heat defect for the water in the calorimeter core was determined separately in independent measurements by irradiation with different charged particle beams covering a wide range of linear energy transfer.  相似文献   

7.
For the past 50 years there has been interest in developing 3-D dosemeters for ionising radiation. Particular emphasis has been put on those dosemeters that change their optical properties in proportion to the absorbed dose. Many of the dosemeters that have been evaluated have had limitations such as lack of transparency, diffusion of the image of the dose distribution or poor stability of baseline optical density. Many of these performance limitations have been overcome by the development of PRESAGE, an optically clear polyurethane-based radiochromic 3-D dosemeter. The solid PRESAGE dosemeter is formulated with a free radical initiator and a leuco dye and it does not require a container to maintain its shape. The polyurethane matrix is tissue equivalent and prevents the diffusion of the dose distribution image. There is a linear dose-response, which is independent of both photon energy and dose rate. Simple precautions such as preventing long-term exposure to additional ionising radiation including ultraviolet and controlling storage temperatures prevent the bleaching of the radiochromic response field within the irradiated dosemeter.  相似文献   

8.
Al(2)O(3):Mg,Y thermoluminescence (TL) dosemeters were used to measure photon and fast neutron doses in a fast neutron beam recently implemented at the Portuguese Research Reactor, Nuclear and Technological Institute, Portugal. The activation of Al(2)O(3):Mg,Y by fast neutrons provides information about the fast neutron component by measuring the activity of the reaction products and the self-induced TL signal. Additionally, the first TL reading after irradiation determines the photon dose. The elemental composition of the dosemeters was determined by instrumental neutron activation analysis and by particle induced X-ray emission. Results demonstrate that Al(2)O(3):Mg,Y is an adequate material to discriminate photon and fast neutron fields for reactor dosimetry purposes.  相似文献   

9.
Inference of intakes and doses from inhalation of metal tritide particles has come under scrutiny because of decommissioning and decontamination of US Department of Energy facilities. Since self-absorption of radiation is very significant for larger particles, interpretation of counting results of metal tritide particles by liquid scintillation requires information about emission spectra. Similarly, inference of dose requires knowledge of charged particle and photon spectra. The PENELOPE Monte Carlo radiation transport computer code was used to compute spectral emissions and other dosimetric quantities for tritide particulates of Sc, Ti, Zr, Er, and Hf. Emission fractions, radial absorbed dose distributions, specific energy distributions and related frequency-mean specific energies and lineal energies, and the emitted spectra of electrons and bremsstrahlung photons are presented for selected particulates with diameters ranging from about 0.01 microm to 25 microm. Results characterising the effects of uncertainties associated with the composition and density of the tritides are also presented. Emission spectra are used to illustrate trends in the relationship between apparent and observed activity as a function of particle type and size. Emissions from metal tritide particles are weakly penetrating, and electron emission spectra tend to 'harden' as particle size increases. Microdosimetric considerations suggest that the radiation emitted by metal tritides can be classified as a low linear energy transfer radiation source. For cells less than about 7 microm away from the surface of a metal tritide, the primary dose component is due to electrons. However, bremsstrahlung radiation may deposit some energy tens, hundreds or even thousands of micrometres away from the surface of a tritide particle. The data and analyses presented in this report will help improve the accuracy of dose determinations for particulates of five metal tritides. Future work on the spectral emissions and dosimetry of metal tritide particulates needs to consider the contributions of so-called internal bremsstrahlung, an additional form of bremsstrahlung radiation emitted during beta decay.  相似文献   

10.
An individual absorbed dose for atomic bomb (A-bomb) survivors and radiologic technologists has been estimated using a new personal dosimetry. This dosimetry is based on the electron spin resonance (ESR) spectroscopy of the CO33− radicals, which are produced in their teeth by radiation. Measurements were carried out to study the characteristics of the dosimetry; the ESR signals of the CO33− radicals were stable and increased linearly with the radiation dose. In the evaluation of the absorbed dose, the ESR signals were considered to be a function of photon energy. The absorbed doses in ten cases of A-bomb victims and eight cases of radiologic technologists were determined. For A-bomb survivors, the adsorbed doses, which were estimated using the ESR dosimetry, were consistent with the ones obtained using the calculations of the tissue dose in air of A-bomb, and also with the ones obtained using the chromosome measurements. For radiologic technologists, the absorbed doses, which were estimated using the ESR dosimetry, agreed with the ones calculated using the information on the occupational history and conditions. The advantages of this method are that the absorbed dose can be directly estimated by measuring the ESR signals obtained from the teeth of persons, who are exposed to radiation. Therefore, the ESR dosimetry is useful to estimate the accidental exposure and the long term cumulative dose.  相似文献   

11.
To monitor workers for external neutron radiation dose, the Y-12 National Security Complex utilises the thermoluminescence dosemeters (TLDs) manufactured by Harshaw. At Y-12, the majority of external dose to workers is due to low-energy photon and/or beta particles emitted from uranium and its progeny. However, some neutron dose is expected since neutrons are produced from (alpha,n) reactions in various compounds found at the plant, including UF4 and UF6. Neutron sources, such as 252Cf, are also used throughout the complex. The Harshaw neutron dosemeter consists of two gamma-sensitive elements (7Li) and two neutron-sensitive elements enriched in 6Li with various shielding/filter materials placed around each of them. In this work, the energy response of the dosemeter to neutrons has been calculated using the Monte Carlo transport code MCNP Version 4-C and, these results are compared with the measured response of the dosemeter to unmoderated and D2O-moderated 252Cf neutrons. The response of the dosemeter has also been determined in terms of the personal absorbed dose and personal dose equivalent as a function of neutron energy based on the recommendations of the ICRP Publication 60 and ICRU Report 49. The energy response of the dosemeter characteristics can be used to generate spectral conversion coefficients for routine neutron absorbed dose and dose equivalent calculations.  相似文献   

12.
The use of electron paramagnetic resonance (EPR) tooth dosimetry for calculation of organ doses requires conversion of the measured absorbed dose in enamel. Before deriving conversion factors from simulation calculations with a realistic anthropomorphic human phantom, in the current study a simplified phantom was chosen to compare EPR measurement and Monte Carlo calculation. The dose response of tooth enamel of molars at various positions inside a cylindrical Plexiglas phantom of head-size was calculated hy Monte Carlo modelling in parallel photon beams of X rays of 63 keV equivalent energy and 60Co gamma rays (1.25 Mev). For X ray exposure, preliminary results of EPR dosimetry with tooth enamel samples prepared from molars irradiated in the phantom were in agreement with calculation. The mean value of the ratio of the measured to the calculated dose was 0.93 +/- 0.08.  相似文献   

13.
Progress report of the CR-39 neutron personal monitoring service at PSI   总被引:1,自引:0,他引:1  
At the Paul Scherrer Institute a personal neutron dosimetry system based on chemically etched CR-39 detectors and automatic track counting is in routine use since the beginning of 1998. The quality of the CR-39 detectors has always been a crucial aspect to maintain a trustable personal neutron dosimetry system. This paper summarises the 7 y experience in routine use. The effect of detector material defects which could lead to false positive neutron doses is described. The potentiality of improving the background statistics by extending the pre-etch time is investigated and involves as a drawback a quite lower sensitivity to thermal neutrons. Furthermore, the impact of small changes in the production process of the detectors on the response to fast and thermal neutrons is shown. For the personal dosimetry at CERN, a new dosimetry concept was launched by combining a CR-39 neutron dosemeter with a Direct-Ion Storage (DIS) dosemeter for photon and beta radiation. The usage period of the CR-39 dosemeters is prolonged now from 3 months up to 12 months. In this context, the long-term behaviour over 1 y of the background track density and the response to Am-Be are described.  相似文献   

14.
An investigation of the thermoluminescence (TL) properties of high pressure, high temperature (HPHT) synthetic diamond crystals grown under diluted nickel or cobalt as solvent catalysts is reported. After a study of TL properties of 6 different samples, it is shown that a crystal grown with Ni+2%Ti and annealed at 2100 K presents an intense glow peak at around 490 K. This peak is characterised by a broad emission band centred at 530 nm (2.34 eV). This crystal presents a significant, reproducible and linear TL response relative to the absorbed dose up to an X ray air kerma of 10 Gy. All these features make this material suitable for ionising radiation dosimetry. A similar study is made on another crystal grown from pure Co, and a comparative review of the results does show that for dosimetry work, Ni-containing diamonds are more appropriate than those grown from Co catalyst.  相似文献   

15.
The experiment 'Dosimetric Mapping' conducted as part of the science program of NASA's Human Research Facility (HRF) between March and August 2001 was designed to measure integrated total absorbed doses (ionising radiation and neutrons), heavy ion fluxes and its energy, mass and linear energy transfer (LET) spectra, time-dependent count rates of charged particles and their corresponding dose rates at different locations inside the US Lab at the International Space Station. Owing to the variety of particles and energies, a dosimetry package consisting of thermoluminescence dosemeter (TLD) chips and nuclear track detectors with and without converters (NTDPs), a silicon dosimetry telescope (DOSTEL), four mobile silicon detector units (MDUs) and a TLD reader unit (PILLE) with 12 TLD bulbs as dosemeters was used. Dose rates of the ionising part of the radiation field measured with TLD bulbs applying the PILLE readout system at different locations varied between 153 and 231 microGy d(-1). The dose rate received by the active devices fits excellent to the TLD measurements and is significantly lower compared with measurements for the Shuttle (STS) to MIR missions. The comparison of the absorbed doses from passive and active devices showed an agreement within +/- 10%. The DOSTEL measurements in the HRF location yielded a mean dose equivalent rate of 535 microSv d(-1). DOSTEL measurements were also obtained during the Solar Particle Event on 15 April 2001.  相似文献   

16.
A measuring system for dosimetry of neutrons generated around medical electron accelerators is proposed. The system consists of an in-phantom tissue-equivalent recombination chamber and associated electronics for automated control and data acquisition. A second ionization chamber serves as a monitor of photon radiation. Two quantities are determined by the recombination chamber--the total absorbed dose and the recombination index of radiation quality. The ambient dose equivalent, H*(10), or neutron absorbed dose in an appropriate phantom, can be then derived from the measured values. Tests of the system showed that a 0.5% dose contribution of neutrons to the absorbed dose of photons could be detected and estimated under laboratory conditions. Preliminary tests at the 15 MV Varian Clinac 2300C/D medical accelerator confirmed that the measuring system could be used under clinical conditions. The H*(10) of the mixed radiation was determined with an accuracy of approximately 10%.  相似文献   

17.
Monitoring of ionising radiation around high-energy particle accelerators is a difficult task due to the complexity of the radiation field, which is made up of neutrons, charged hadrons, muons, photons and electrons, with energy spectra extending over a wide energy range. The dose-equivalent outside a thick shield is mainly owing to neutrons, with some contribution from photons and, to a minor extent, the other particles. Neutron dosimetry and spectrometry are thus of primary importance to correctly evaluate the exposure of personnel. This paper reviews the relevant techniques and instrumentation employed for monitoring radiation fields around high-energy proton accelerators, with particular emphasis on the recent development to increase the response of neutron measuring devices > 20 MeV. Rem-counters, pressurised ionisation chambers, superheated emulsions, tissue-equivalent proportional counters and Bonner sphere spectrometers are discussed.  相似文献   

18.
In neutron reference radiation fields, the conventional true value of the personal dose equivalent, H(p)(10), is derived from the spectral neutron fluence and recommended conversion coefficients. This procedure requires the phantom on which the personal dosemeter is mounted to be irradiated with a broad and parallel beam. In many practical situations, the change of the neutron fluence and/or the energy distribution over the surface of the phantom may not be neglected. For a selection of typical irradiation conditions in neutron reference radiation fields, the influence of this effect has been analysed using numerical methods. A further problem, which is of relevance for the calibration of dosemeters measuring both the neutron and the photon component of mixed fields, is the 'double counting' of the dose equivalent due to neutron-induced photons. The relevance of this conceptual problem for calibrations in mixed-field dosimetry was analysed.  相似文献   

19.
EPR dose reconstruction after accidental photon exposure based on materials irradiated in the vicinity of the victim (sucrose, medicine tablets, etc.) was used successfully in several cases referenced in the literature. However, accidental exposure may also occur with a neutron component such as in the Tokai-Mura criticality accident. The aim of this work is to investigate the potentiality of EPR dosimetry for mixed photon and neutron field exposure with different organic materials already used for photon exposure (sucrose) or with potential dosimetric properties (ascorbic acid, sorbitol, glucose, galactose, fructose, lactose and mannose). To assess the neutron sensitivity, the materials were exposed to a mixed radiation field of an experimental reactor with different neutron to photon ratios. The relative neutron sensitivity was found to range from 12 to 43% according to the materials. The potentiality of these materials for mixed field EPR dosimetry is discussed.  相似文献   

20.
TRIPOLI-4.3 Monte Carlo transport code has been used to evaluate the QUADOS (Quality Assurance of Computational Tools for Dosimetry) problem P4, neutron and photon response of an albedo-type thermoluminescence personal dosemeter (TLD) located on an ISO slab phantom. Two enriched 6LiF and two 7LiF TLD chips were used and they were protected, in front or behind, with a boron-loaded dosemeter-holder. Neutron response of the four chips was determined by counting 6Li(n,t)4He events using ENDF/B-VI.4 library and photon response by estimating absorbed dose (MeV g(-1)). Ten neutron energies from thermal to 20 MeV and six photon energies from 33 keV to 1.25 MeV were used to study the energy dependence. The fraction of the neutron and photon response owing to phantom backscatter has also been investigated. Detailed TRIPOLI-4.3 solutions are presented and compared with MCNP-4C calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号