首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aims at gaining a better understanding of the microstructural features that control the mechanical and the tribological performances of WC–12 wt.% Co coatings under High Velocity Oxygen Fuel (HVOF) spraying conditions. This paper looks at the influences of the HVOF process parameters for WC–12Co material on the microstructural and the tribological behaviours of the coatings. The correlation between the coating microstructure and the wear behaviour is investigated by observing and analysing the microstructure and by studying the friction moment using enhanced statistical tool based on neural computations. According to the experimental and the numerical results, it has been shown that the spray parameters affect the phase composition, hardness and porosity of HVOF sprayed WC–12Co coatings and the correlations with HVOF process parameters are fully predictable in the steady-state regime.  相似文献   

2.
This paper, which reports on part of a 3-year research project into wet-process sprayed mortars and concretes for repair, investigates the hardened performance of wet-process sprayed fine concretes. It follows on from an earlier paper by the authors on the performance of hardened wet-process sprayed mortars and some comparisons with these are made here (Austin SA, Robins PJ, Goodier CI (2000). Magz Concr Res 52:195–208). Work has also been completed by the authors on the pumping and rheology of the fine concrete mixes presented here (Austin SA, Goodier, CI, Robins PJ (2005). Mater Struc, RILEM 38:229–237). Nine laboratory-designed fine concretes were pumped and sprayed through a wet-process piston pump and one through a dry-process pump. The properties measured included compressive and flexural strength, tensile bond strength, hardened density, elastic modulus, sorptivity and drying and restrained shrinkage. In situ test specimens were extracted from 500 × 500 × 100 mm deep sprayed panels. Hardened property tests were also conducted on corresponding cast specimens and, where possible, on specimens that had been sprayed directly into a cube or beam mould. The compressive strengths of the cast cubes, although very similar, were usually slightly greater than the in␣situ cubes, the opposite of what was found for wet-sprayed mortars (Austin SA, Robins PJ, Goodier CI (2000). Magz Concr Res 52:195–208). Inconsistent results for compressive and flexural strengths obtained from spraying directly into a steel mould suggest that this method is not as reliable when using a piston pump as it is when using a low-output worm pump (Austin SA, Robins PJ, Goodier CI (2000). Magz Concr Res 52:195–208). The bond strength of all the mixes exceeded 2.1 MPa at 7 days. The values for modulus of elasticity, when compared with the compressive strength, were similar to published data for this relationship. The sorptivity values showed only a slight relationship with the compressive strength. The mixes exhibited a wide range of drying shrinkage, but the data from the restrained specimens suggest an actual repair is influenced as much by ambient conditions as it is by the mix proportions.  相似文献   

3.
Glass microspheres have been sintered under argon in order to obtain sintered brittle bodies over a large range of density. During sintering, the microstructure evolves from a stacking of spheres to a body containing isolated pores. This evolution of the microstructure is described using image analysis and mathematical morphology. Mechanical properties are also investigated as a function of density. Special attention was paid to fracture toughness because, due to the isotropic behaviour of glass, internal stresses of the second order do not exist. A maximum ofG IC is observed and it can be correlated with changes in the morphological parameters.  相似文献   

4.
The mechanical properties of macro-defect-free cements were investigated with the help of fracture mechanics and rheology; transmission electronic microscopy (TEM) and scanning electronic microscopy (SEM) were used to characterize the microstructure. The microstructure was found to consist of nanosized hydration products embedded in a cross-linked polymer matrix. The nanoscale composite structure of the cement is thought to play an important part in the mechanical properties.  相似文献   

5.
In the present study, it has been attempted to develop biodegradable Mg-HAP (magnesium-hydroxyapatite) composite materials for bone replacement. At first the HAP powders were prepared by chemical synthesis process and synthesized powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Synthesized powders contain HAP as a major phase with tricalcium phosphate (β-TCP) as a minor phase. The Mg-HAP composites were prepared by adding different amounts of HAP powders to Mg melts and finally the billets were extruded. The microstructure of Mg-HAP composite was examined by optical microscope (OM). The presence of HAP in Mg matrix results in decrease of grain size of Mg-HAP composites. The theoretical and experimental hardness of the composites are compared with the addition of HAP. The tensile strength of composites is found to decrease with the addition of HAP, whereas compressive strength increases with HAP.  相似文献   

6.
Microstructure and mechanical properties of hot-pressed SiC-TiC composites   总被引:1,自引:0,他引:1  
Hot-pressed SiC-TiC composite ceramics with 0–100 wt% TiC have been investigated to determine the effect of composition (amount of TiC) on the elastic modulus, hardness, flexural strength and fracture toughness,K IC. The composites exhibited superior mechanical properties compared to monolithic SiC and TiC, especially in fracture toughness,K IC, value for 30–50 wt% TiC composite. The maximum values ofK IC and room-temperature flexural strength were 6 MPa m1/2 for a 50 wt % TiC and 750 MPa for a 30 wt% TiC composite, respectively. The observed toughening could be attributed to the deflection of cracks due to dispersion of the different particles. Although no third phases were detected by both TEM and XRD studies, an EDAX study and resistivity measurements indicated some possibility of solid solutions being present. The composites containing more than 30 wt% TiC, exhibited resistivity lower than 10–3 cm which is favourable for electro-discharge machining of ceramics.  相似文献   

7.
Microstructure and mechanical properties of pitch-based carbon fibres   总被引:1,自引:0,他引:1  
The microstructure of a series of mesophase pitch-based carbon fibres have been examined using X-ray diffraction, electron microscopy and Raman spectroscopy. It has been shown that the mechanical properties of the fibres are related directly to the response of this microstructure to deformation and, in particular, that the Young's modulus and tensile strength of the fibres are controlled directly by the fibre microstructure. It has also been shown that Raman spectroscopy can be a useful technique for not only characterizing the microstructure of the fibres but also for following molecular deformation in the fibres. It was found that the position of the 1580 cm–1 Raman band for the fibres shifted with the application of stress and that the rate of shift per unit strain was proportional to the Young's modulus of the fibres. It was also shown that this reflected the higher degree of stressing of the graphite plane in the higher modulus fibres, consistent with recently developed theories which attempt to explain the dependence of the mechanical properties of carbon fibres upon the degree of orientation of the graphite planes.  相似文献   

8.
The methods used to prepare three spray dried yttria-zirconia powders have been shown to have a large effect on their behaviour during subsequent heat treatment and also on their resultant properties. Changes of morphology of the granules, their surface area, pore size distribution, porosity and compressive strength which occur during heat treatment have been determined. A concept of local densification was used to explain the observed changes in pore size distribution, where it was shown that distributions with pores smaller than 60–80 nm resulted in significant pore enlargement during the early stages of sintering. A theory based on fracture mechanics explained the changes in compressive strength of the granules.  相似文献   

9.
Effect of orientation on microstructure and mechanical properties of thermoplastic starches with different amylose/amylopectin ratios was studied to understand the relationship between structure and properties in starch-based materials. Hydrogen bonds and the highly branched microstructure in amylopectin resist the orientation of the polymer chains. The unique microstructures of amylopectin form gel-balls and super-globes after gelatinization. A gel-ball contains mainly the chains from same sub-main chain in amylopectin, and remains in regular pattern and keeps a certain memory. The gel-balls and super-globes can be deformed under shear stress. However, the deformation does not alter the orientation ofthe polymer chains inside the gel-balls significantly. Orientation increases both modulus and yield stress but decreases the elongation, which is mainly contributed to by the orientation of amorphous phase. The oriented super-globe has large interior stress after retrogradation (crystallization) that results in micro-cracks and poor mechanical properties.  相似文献   

10.
The microstructure and mechanical properties of various (Ti1−xWx)C-20 wt.%Ni cermets were investigated, where x varies from 0.07 to 0.3. Homogeneous solid-solution (Ti1−xWx)C powders were prepared by carbothermal reduction via planetary milling of Ti, TiO2, WO3 and carbon powder mixtures. The cermets made of the powders showed a simple core-rim structure consisting of solid-solution carbides. The hardness of the solid-solution cermets is somewhat lower than that of conventional cermets, but they show greater toughness. The transverse rupture strength increases with increasing W content.  相似文献   

11.
《材料科学技术学报》2019,35(10):2331-2335
The microstructure and tensile properties of FexCoCrNiMn high-entropy alloys (HEAs) were investigated. It was found that the FexCoCrNiMn HEA has a single face-centered cubic (fcc) structure in a wide range of Fe content. Further increasing the Fe content endowed the FexCoCrNiMn alloys with an fcc/body-centered cubic (bcc) dual-phase structure. The yield strength of the FexCoCrNiMn HEAs slightly decreased with the increase of Fe content. An excellent combination of strength and ductility was achieved in the FexCoCrNiMn HEA with higher Fe content, which can be attributed to the outstanding deformation coordination capability of the fcc/bcc dual phase structure.  相似文献   

12.
Superlattice nitride coatings with four different layer constituents, i.e., ZrN, MoN, NbN and AlN, were synthesized using an unbalanced closed-field magnetron sputtering coater. At small superlattice modulation periods, both MoN and AlN layers adapted to the cubic B1 structure due to a template effect, and the coatings exhibited a strong (2 0 0) preferred orientation. Increasing the modulation period above a critical value led to the formation of hexagonal MoN and AlN layers with diminishing (2 0 0) preferred orientation. These microstructure changes were reflected in the coating mechanical properties. Relatively high hardness and Young's modulus values were obtained at small modulation periods, which decreased dramatically above the critical modulation period. The effects of substrate bias on the layer crystallographic structure, coating preferred orientation and mechanical properties were similar to those of the modulation period.  相似文献   

13.
将Ni-Al混合粉在不引起反应的条件下喷涂到Q235钢基材表面,H2作为保护气氛,加热到993K,并随炉冷却制备试样.实验结果表明,界面处的硬度明显高于基材和涂层的硬度约32HV,界面结合强度比烧结前增加了2~3倍.SEM和EDX分析表明:界面有约为101μm的Ni-Fe扩散区,扩散区内EDX曲线存在4~5tμm宽的台阶,证实Fe/Ni界面区有新相生成,初步认为是Ni3 Fe有序固溶体.  相似文献   

14.
Investigation on mechanical properties of young concrete   总被引:3,自引:0,他引:3  
Young concrete usually refers to the concrete with an age less than 7 days. Due to the progress of hydration, the mechanical properties of young concrete are quite different from those of mature concrete. This investigation is aimed at understanding the mechanical properties of young concrete under both uniaxial compression and tension. The uniaxial compression and uniaxial tension tests have been conducted on the concrete specimens at ages of 12 hours, 18 hours, 24 hours, 48 hours, 72 hours, and 168 hours. By utilizing the circumferential control and adaptive control, the complete stress-strain (deformation) curves have been obtained for young concrete under either uniaxial compression or unixial tension. The experimental results show that the behavior of young concrete is quite ductile until about 3 days. The effect of incorporating metakaolin into concrete mix has also been studied in this research. It is found that the metakaolin can significantly enhance the mechanical properties of young concrete.  相似文献   

15.
16.
17.
Microstructure and mechanical properties of friction stir welded copper   总被引:1,自引:0,他引:1  
The main objective of this investigation was to apply friction stir welding technique (FSW) for joining of 2 mm thick copper sheet. The defect free weld was obtained at a tool rotational and travel speed of 1,000 rpm and 30 mm/min, respectively. Mechanical and microstructural analysis has been performed to evaluate the characteristics of friction stir welded copper. The microstructure of the weld nugget (WN) consists of fine equiaxed grains. Similarly, the elongated grains in the thermomechanically affected zone (TMAZ) and coarse grains in the heat-affected zone (HAZ) were observed. The hardness values in the WN were higher than the base material. Eventually HAZ shows lowest hardness values because of few coarse grains presence. Friction stir welded copper joints passes 85% weld efficiency as compared to the parent metal.  相似文献   

18.
ABSTRACT

Recent studies indicated that precipitation-hardened high-entropy alloys (HEAs) possess outstanding properties. It is difficult to obtain substantial precipitated particles for HEAs at the as-cast condition. In this paper, cast precipitation-hardened high-entropy superalloys (HESAs) Ni48?x Co18Cr10.5Fe9.3Al9.7Ti4.5Mo x (at.-%, x?=?1, 2, 3) were designed and prepared. All HESAs possess a high-entropy matrix and a fine γ′ particles structure. HESAs have higher ultimate tensile strength and elongation at room temperature than conventional Ni-based superalloys and close yield strength. All HESAs possess high compressive strength at elevated temperature. At 850?°C, the strengths of all alloys are higher than 800?MPa. Solid solution strengthening and precipitation strengthening were discussed. Precipitation strengthening has the greatest contribution to yield strength.  相似文献   

19.
Titanium alloys with lower elastic modulus and free from toxic elements such as Al and V have been studied for biomedical matters. Ti–Nb–Sn alloys showed up as presenting great potential for the aforementioned purpose. The current study got Ti–35Nb-XSn alloys (x = 2.5; 5.0; 7.5) by applying the following techniques: arc melting, homogenizing and cooling in furnace, homogenizing and water quenched, hot rolling and water quenched. According to each step of the study, the microstructures were featured by means of optical microscopy, by applying a scanning electron microscopy (SEM) analysis as well as X-ray diffraction. The mechanical properties were gotten by means of: Vickers microhardness, tensile and ultrasonic tests. Their ratio between tensile strength and elastic modulus as well as the ductility were compared to other biomedical alloys already available in the literature. The mechanical behavior of the Ti–Nb alloys directly depends on the Sn rates that constitutes the phases as well as on the thermomechanical background to which the alloy was submitted to. The hot rolled Ti–35Nb–2.5Sn alloy showed high ratio between strength and elastic modulus as well as high ductility, just as high as those of some cold rolled Ti alloys.  相似文献   

20.
An accelerated carbonation technique was employed to strengthen the quality of recycled concrete aggregates (RCAs) in this study. The properties of the carbonated RCAs and their influence on the mechanical properties of new concrete were then evaluated. Two types of RCAs, an old type of RCAs sourced from demolished old buildings and a new type of RCAs derived from a designed concrete mixture, were used. The chosen RCAs were firstly carbonated for 24 h in a carbonation chamber with a 100% CO2 concentration at a pressure level of 0.1 Bar and 5.0 Bar, respectively. The experimental results showed that the properties of RCAs were improved after the carbonation treatment. This resulted in performance enhancement of the new concrete prepared with the carbonated RCAs, especially an obvious increase of the mechanical strengths for the concrete prepared with the 100% carbonated new RCAs. Moreover, the replacement percentage of natural aggregates by the carbonated RCAs can be increased to 60% with an insignificant reduction in the mechanical properties of the new concrete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号