首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The direction of thrusting contemporaneous with high pressure-low temperature (HP/LT) metamorphism of the ophiolite Schistes Lustrés nappes in Cap Corse, Alpine Corsica has changed from being towards the northwest to towards the southwest during Upper Cretaceous obduction.Similar anticlockwise changes in thrusting have been observed in other regions of Alpine Corsica, Calabria and Southern Betic Cordilleras. A model is proposed for the Alpine evolution of this part of the Western Alps involving a sinistral component of transcurrent movement added to the northwest thrusting. These events have been followed by Eocene backthrusting of nappe of southern-Alpine origin in northwest Cap Corse towards the southeast with associated backfolding of the underlying Schistes Lustrés.  相似文献   

2.
Centimetre‐ to decimetre‐wide quartz+calcite veins in schistes lustrés from Alpine Corsica were formed during exhumation at 30–40 Ma following blueschist facies metamorphism. The δ18O and δ13C values of the veins overlap those of the host schistes lustrés, and the δ18O values of the veins are much higher than those of other rocks on Corsica. These data suggest that the vein‐forming fluids were derived from the schistes lustrés. Fluids were probably generated by reactions that broke down carpholite, lawsonite, chlorite and white mica at 300–350 °C during decompression between c. 1400 and 800 MPa. However, the δ18O values of the veins are locally several per mil higher than expected given those of their host rocks. The magnitude of oxygen isotope disequilibrium between the veins and the host rock is inversely proportional to the δ18O value of the host rock. Additionally, calcite in some schists is in isotopic equilibrium with calcite in adjacent veins, but not with the silicate fraction of the schists. Locally, the schists are calcite bearing only within 1–20 cm of the veins. The vein‐forming fluids may have been preferentially derived from calcite‐bearing, high‐δ18O rocks that are common within the schistes lustrés and that locally contain abundant (>15%) veins. If the fluids were unable to completely isotopically equilibrate with the rocks, due to relatively rapid flow at moderate temperatures or being confined to fractures, they could form veins with higher δ18O values than those of the surrounding rocks. Alteration of the host rocks was probably inhibited by isolation of the fluid in ‘quartz‐armoured’ veins. Overall, the veins represent a metre‐ to hectometre‐scale fluid‐flow system confined to within the schistes lustrés unit, with little input from external sources. This fluid‐flow system is one of several that operated in the western Alps during exhumation following high‐pressure metamorphism.  相似文献   

3.
Fault data collected from the Schistes Lustrés domain point to the existence of successive steps of deformation and indicate that extension is not multidirectional. This study underlines the continuity between the patterns of late brittle/ductile exhumation tectonics and brittle deformation, and strenghtens the view that extensional movements dominate in shallow levels of the inner Western Alps since at least 35–30 Ma. The progressive clockwise rotation of the earliest directions of extension with time is compatible with the amount of anticlockwise rotation from c. 35 Ma determined by recent palaeomagnetic studies, whereas the last documented N–S extension may reflect a short‐lived stage of orogen‐parallel extension.  相似文献   

4.
Pressure–temperature (P–T) paths as complete as possible and with a precision on the km‐scale or less are needed to further improve the knowledge of deformation, re‐equilibration processes and element/fluid transfer, in particular along subduction zones. This contribution attempts to (i) critically evaluate the precision and continuity with which metamorphic P–T histories are retrieved today and (ii) discuss implications for regional‐scale accretionary processes in subduction zones, through application to the Schistes Lustrés complex (Haute Maurienne, W. Alps). P–T estimates are compared and combined using several independent approaches: (i) from minerals assumed to be in textural equilibrium; (ii) from electron microprobe compositional maps; and (iii) from pseudosection modelling predictions. Multi‐equilibrium calculations were performed with tweequ and thermocalc, and pseudosections were built with Perple_X and Theriak/Domino. These P–T estimates were also compared with maximum temperatures (Tmax) deduced from the Raman spectroscopy of carbonaceous matter. The different methods used here yield the peak of pressure for the lower structural unit of the Schistes Lustrés at 480 °C and 23 kbar and document the retrograde path for both the Median and Lower Units. The results show that P–T conditions are recorded almost continuously and can be determined with a precision of ±1 kbar and ±30 °C at best. This study underlines the complementarity of the various thermobarometric methods and demonstrates that precision could be increased by improving solid solution models for chlorite. Observed tectonic patterns, major lithological boundaries, pressure–temperature and Tmax data suggest that underplating processes and early structural development played a key role in the Schistes Lustrés accretionary complex.  相似文献   

5.
Abstract The Hercynian granitic basement which forms the Tenda Massif in NE Corsica represents part of the leading edge of the European Plate during middle-to-late Cretaceous (Eoalpine) high P metamorphism. The metamorphism of this basement, induced by the overthrusting of a blueschist facies (schistes lustrés) nappe, was confined to a major ductile shear zone (c. 1000m thick) within which deformation increases upwards towards the overlying nappe. Metamorphism within the basement mostly records lower blueschist facies conditions (crossite + epidote) except near the base of the shear zone where the greenschist facies assemblage albite + actinolitic amphibole has developed instead of crossite. Study of the primary mafic phase breakdown reactions within hornblende granodiorite reveals the following metamorphic zonation. Zone 1: biotite to chlorite. Towards zone 2: biotite to phengite. Zone 2: Hornblende to actinolitic Ca-amphibole + albite + sphene, and biotite to actinolitic Ca-amphibole + albite + phengite + Ti-ore + epidote. Zone 3: Hornblende to crossite + low Ti-biotite + phengite + sphene, and biotite to crossite + low Ti-biotite + phengite + Ti-ore + sphene ± epidote. P-T conditions at the base of the shear zone are estimated to have been 390-490°C at 600-900 M Pa (6-9kbar) and the Corsican basement is therefore deduced to have been buried to 20-30 km during metamorphism. This relatively shallow metamorphism contrasts with some other areas in the Western Alps where the Eoalpine event apparently buried the European continental crust to depths of 80 km or more. As there is no evidence for a long history of blueschist facies metamorphism prior to the involvement of the European continent, it is deduced that the Eoalpine blueschists were produced during the collision of the Insubric plate with Europe, rather than during Tethyan intraoceanic subduction. Coherent blueschist terrains such as the schistes lustres probably record buovant feature collision and obduction tectonics rather than any preceding oceanic subduction.  相似文献   

6.
Structural studies in the Schistes lustrés nappe west of Bastia, Corsica, demonstrate the existence of a tectonic mélange in which km-scale blocks and smaller lozenges of basement granite gneiss, thick-layered marble and dismembered Mesozoic ophiolite are enveloped in a matrix of calc-schist and blueschist. The main (S1) foliation is developed in both block and matrix and is concordant with lithologie contacts. Blueschist facies metamorphism was syn-kinematic with the main foliation.The S1 in the Schistes lustrés was refolded about ENE-WSW trending, tight similar and monoclinal fold axes (F2). These second folds verge to the southeast and show km-scale axial culminations and depressions that are reflected by topography and residual Bouguer gravity anomalies.Parautochthonous Hercynian basement (Tenda-Corte complex) beneath the western edge of the Schistes lustrés nappe contains a mylonitic foliation which is concordant with the main foliation in the Schistes lustrés. The intensity of deformation in the basement decreases away from this contact and undeformed granites are found 3 km to the west.Whole rock samples of the deformed basement immediately beneath the Schistes lustrés yield an Rb-Sr isochron diagram (n = 4) which has an age of 105 ± 8 Ma (1σ) and initial ratio of 0.7228 ± 0.0005 (1σ). This result is more precise than our preliminary age and initial ratio estimate of 98 ± 14 and 0.7296 ± 0.0068, respectively (Cohen et al., 1979). It is similar to a recently published mid-Cretaceous (90 Ma) 40Ar-39Ar age from glaucophane mineral separates. We interpret this date as the age of a metamorphic overprint related to the emplacement of the Schistes lustrés nappe and associated ophiolites, the formation of the main foliation and blueschist facies metamorphism.These results indicate that the mid-Cretaceous blueschist facies metamorphism documented in the Western Alps formerly extended farther south of its present terminus. The data are consistent with mid-Cretaceous obduction of Tethyan oceanic crust onto the present-day eastern continental margin of Corsica. We postulate that during Eocene—early Oligocene time a polarity flip occurred outboard of the obducted crust and a new, southfacing subduction zone developed. This change in polarity was responsible for the development of southeast-vergent second folds and for the resetting of 40Ar−39Ar and K-Ar geochronologic clocks described in the literature.  相似文献   

7.
In Alpine Corsica, the Jurassic ophiolites represent remnants of oceanic lithosphere belonging to the Ligure‐Piemontese Basin located between the Europe/Corsica and Adria continental margins. In the Balagne area, a Jurassic ophiolitic sequence topped by a Late Jurassic–Late Cretaceous sedimentary cover crops out at the top of the nappe pile. The whole ophiolitic succession is affected by polyphase deformation developed under very low‐grade orogenic metamorphic conditions. The original palaeogeographic location and the emplacement mechanisms for the Balagne ophiolites are still a matter of debate and different interpretations for its history have been proposed. The deformation features of the Balagne ophiolites are outlined in order to provide constraints on their history in the framework of the geodynamic evolution of Alpine Corsica. The deformation history reconstructed for the Balagne Nappe includes five different deformation phases, from D1 to D5. The D1 phase was connected with the latest Cretaceous/Palaeocene accretion into the accretionary wedge related to an east‐dipping subduction zone followed by a Late Eocene D2 phase related to emplacement onto the Europe/Corsica continental margin. The subsequent D3 phase was characterized by sinistral strike‐slip faults and related deformations of Late Eocene–Early Oligocene age. The D4 and D5 phases were developed during the Early Oligocene–Late Miocene extensional processes connected with the collapse of the Alpine belt. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
The Popolasca–Francardo area of northern Corsica contains an assemblage of continental tectonic units affected by an Alpine deformation. In one of these units, Unit II, previously regarded as weakly metamorphosed, a metamorphic mineral assemblage characterized by sodic amphibole, phengite, quartz, albite and epidote has been found in an aplite dyke that cuts the dominant granitoids. Peak‐metamorphic temperature and pressure conditions of 300–370°C and 0.50–0.80 GPa, respectively, have been determined. This finding indicates that a continuous belt of continental slices, characterized by high‐pressure, low‐temperature metamorphism of Tertiary age, extends from the Tenda Massif in the north to the Corte area in the south, thus placing additional constraints on the tectonic evolution of Alpine Corsica. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a structural analysis of the external zone of Alpine Corsica, including the autochthonous domain and overlying external nappes (Santa Lucia and Balagne nappes). Two stages of nappe emplacement are identified occurring prior to and after the deposition of the Eocene sediments which were laid down upon first generation thrust contacts but are imbricated with their composite (continental and ophiolitic) basement by second generation thrusts. Five generations of structures with regional extent have been distinguished. However, the first generation has not been recognized within the visible part of the autochthon domain.Eoalpine first generation structures, restricted to allochthonous units, and Late Eocene to Early Oligocene second generation structures were nearly contemporaneous with the two stages of thrusting. The precise significance of E-W third generation structures is poorly understood. Broadly N-S fourth generation structures resulted from Oligocene compressive tectonics (folding and local backthrusting). Finally, fifth generation structures were generated during a Miocene extensional stage.These results are partly consistent with structural features previously reported in the southern and the northern outcrops of the Schistes lustrés, i.e. the main part of the allochthonous domain. A summary of a regional tectonic evolution is thus proposed for Alpine Corsica from Eoalpine obduction to Miocene extension.  相似文献   

10.
《Comptes Rendus Geoscience》2019,351(5):384-394
In Corsica, continental units (the Lower Units) affected by high-pressure metamorphism represent the remains of the European margin deformed during the Alpine orogeny. In order to document how Alpine deformation and metamorphism changed along the European margin involved in the Alpine subduction, we selected three key areas: the Corte, Cima Pedani, and Ghisoni transects. The three transects show a broadly similar lithostratigraphy. They are characterized by a Variscan basement intruded by Permo-Carboniferous metagranitoids, and by a sedimentary cover including Mesozoic carbonates and middle to late Eocene breccias and sandstones. The three transects recorded a similar deformation history with three deformation phases. Thermo-baric estimations, instead, reveal that each unit was exhumed along an independent retrograde path within the orogenic Alpine wedge. In particular, the lowest units of the Lower Units stack were exhumed along an isothermal path, whereas those located at upper structural levels experienced progressive heating.  相似文献   

11.
In Alpine Corsica, the major tectonic event during the late Cretaceous was the thrusting to the west of an ophiolitic nappe and its sedimentary cover upon the Variscan basement and its Mesozoic cover. A detailed field survey shows that the basal contact of the nappe corresponds to a pluri-kilometric scale shear zone. Thus gneissified basement slices have been tectonically emplaced in the ophiolitic nappe. The thrusting was responsible for small scale structures: foliation, lineation and folds, initiated in a HP/LT metamorphic context. The deformation analysis shows that the finite strain ellipsoid lies in the constriction field close to that for plane strain. Moreover occurrences of rotational criteria in the XZ planes (sigmoidal micas, asymmetric pressure shadows, quartz C-axes fabrics) are in agreement with shear from east to west. All structural data from microscopic to kilometric scales, of which the most widespread is a transverse stretching lineation, can be interpreted by a simple shear model involving ductile synmetamorphic deformation. At the plate tectonic scale the ophiolitic obduction is due to intraoceanic subduction blocked by underthrusting of continental crust beneath oceanic lithosphere.  相似文献   

12.
Expectations regarding structural deformation of asteroidal meteorites have typically revolved around impact-induced shock metamorphism or the gravity-driven axial compression of cumulates at the base of magma chambers. Recent structural analyses, however, of several olivine-rich diogenites (harzburgites) reveal solid-state plastic deformation not attributable to either scenario and propose dynamic mantle movements in the parent body, assumed to be Vesta. In this study we examine the microstructures of pyroxene and olivine in the olivine-rich diogenite NWA 5480. Coarse-grained, poikilitic texture, exsolution lamellae and plastic deformation attest to polyphase deformation and a re-heating event, followed by relatively slow cooling. Observations suggest that impact events alone are insufficient to generate and sustain the thermal and deformation conditions required to achieve all of the observed features. The proposed dynamic mantle movements in the Vestan interior may offer a means of heat transport to the system to provide a thermal environment inducive to slow cooling as well as generate the incremental stress fields required for the polyphase plastic deformation observed in the olivine.  相似文献   

13.
Multiple pieces of geologic evidence suggest that interfaces between contrasted lithologies exert a strong control on the fate of volatiles in subduction zones. Here we present results from a contact between serpentinites and sediments, located in Corsica and metamorphosed in the blueschist facies during the alpine orogeny. It was shown previously that carbonates in the sediments have been reduced to graphitic carbonaceous material within a 5–10-cm-thick reaction zone at the contact with serpentinites. In an effort to investigate the mechanisms governing this unusual process, bulk rock geochemical analyses incorporating a statistical analysis of compositional data are presented. Observations show that the fate of C was decoupled from that of other elements such as O, H, and large-ion lithophile elements—e.g. K, Sr, Ba...,As—that were extensively leached from the reaction zone. Notably, Na is strongly enriched in the reaction zone and structurally linked to pectolite. Reducing conditions, manifested by the depletion of O in the reaction zone compared to the bulk metasediment, were likely maintained by the presence of Fe(II) in the serpentinite. Moreover, thermodynamic calculations show that the low solubility of carbon in COH fluids at high-pressure and low-temperature conditions was the main driver for graphite precipitation synchronously with carbonate destabilization. This may have been kinetically favored by the presence of already existing graphitized carbonaceous material and phengite in the metasediment. Limited lateral flow might have contributed as well to the geochemical and petrological patterns observed in these rocks.  相似文献   

14.
Aggregates composed of olivine and magnesiowüstite have been deformed to large strains at high pressure and temperature to investigate stress and strain partitioning, phase segregation and possible localization of deformation in a polyphase material. Samples with 20 vol.% of natural olivine and 80 vol.% of (Mg0.7Fe0.3)O were synthesized and deformed in a gas-medium torsion apparatus at temperatures of 1127 °C and 1250 °C, a confining pressure of 300 MPa and constant angular displacement rates equivalent to constant shear strain rates of 1–3.3 × 10− 4 s− 1. The samples deformed homogeneously to total shear strains of up to γ  15. During constant strain rate measurements the flow stress remained approximately stable at 1250 °C while it progressively decreased after the initial yield stress at the lower temperature. Mechanical data, microstructures and textures indicate that both phases were deforming in the dislocation creep regime. The weaker component, magnesiowüstite, controlled the rheological behavior of the bulk material and accommodated most of the strain. Deformation and dynamic recrystallization lead to grain refinement and to textures that were not previously observed in pure magnesiowüstite and may have developed due to the presence of the second phase. At 1127 °C, olivine grains behaved as semi-rigid inclusions rotating in a viscous matrix. At 1250 °C, some olivine grains remained largely undeformed while deformation and recrystallization of other grains oriented for a-slip on (010) resulted in a weak foliation and a texture typical for pure dry olivine aggregates. Both a-slip and c-slip on (010) were activated in olivine even though the nominal stresses were up to 2 orders of magnitude lower than those needed to activate these slip systems in pure olivine at the same conditions.  相似文献   

15.
The Alpine belt in Corsica (France) is characterized by the occurrence of stacked tectonic slices derived from the Corsica/Europe continental margin, which outcrop between two weakly or non‐metamorphic tectonic domains: the ‘autochthonous’ domain of the Hercynian basement to the west and the Balagne Nappe (ophiolitic unit belonging to the ‘Nappes supérieures’) to the east. These slices, including basement rocks (Permian granitoids and their Palaeozoic host rocks), Late Carboniferous–Permian volcano‐sedimentary deposits, coarse‐grained polymict breccias (Volparone Breccia) and Middle Eocene siliciclastic turbidite deposits, were affected by a polyphase deformation history of Alpine age, associated with a well‐developed metamorphic recrystallization. This study provides new quantitative data about the peak of metamorphism and the retrograde P–T path in the Alpine Corsica: the tectonic slices of Volparone Breccia from the Balagne region (previously regarded as unmetamorphosed) were affected by peak metamorphism characterized by the phengite + chlorite + quartz ± albite assemblage. Using the chlorite‐phengite local equilibria method, peak metamorphic P–T conditions coherent with the low‐grade blueschist facies are estimated as 0.60 ± 0.15 GPa and 325 ± 20 °C. Moreover, the retrograde P–T path, characterized by a decrease of pressure and temperature, is evidence of the first stage of the exhumation path from the peak metamorphic conditions to greenschist facies conditions (0.35 ± 0.06 GPa and 315 ± 20 °C). The occurrence of metamorphic peak at high‐pressure/low‐temperature (HP/LT) conditions is evidence of the fact that these tectonic slices, derived from the Corsica/Europe continental margin, were deformed and metamorphosed in the Alpine subduction zone during their underplating at ~20 km of depth into the accretionary wedge and were subsequently juxtaposed against the metamorphic and non‐metamorphic oceanic units during a complex exhumation history.  相似文献   

16.
吉风宝  戚学祥  常裕林  张超  赵宇浩  韦诚 《岩石学报》2015,31(12):3713-3724
澜沧江构造带是青藏高原东南缘保山-羌塘地块与兰坪-思茅地块之间的大型走滑剪切带。构造地质学、岩石学和40Ar-39Ar年代学研究结果表明构造带中段剪切带内部存在早期斜向挤出和晚期水平走滑的两期线理及早期指示右行韧性剪切变形、后期指示左行脆韧性剪切变形的构造指向。糜棱岩中石英晶格优选方位以中温(450~600℃)柱面a轴底面滑移系为主,叠加中低温(300~550℃)底面a轴滑移系;剪切带内云母片岩和花岗质糜棱岩中黑云母40Ar-39Ar坪年龄和等时线年龄都分布于15~17Ma,反映剪切带隆升过程中脆韧性左行剪切变形阶段的时代。结合前人成果进行分析认为新生代早期保山地块和兰坪-思茅地块向南南东挤出的同时沿澜沧江构造带中段发生大规模右行斜向走滑韧性剪切作用,后期保山地块南部沿北东向畹町和南汀河左行断裂带相对中北段向北东运动,致使隆升到中上构造层次的韧性剪切带发生左行脆韧性变形。  相似文献   

17.
Low-grade metamorphic rocks of Paleozoic–Mesozoic age to the north of Konya, consist of two different groups. The Silurian–Lower Permian Sizma Group is composed of reefal complex metacarbonates at the base, and flyschoid metaclastics at the top. Metaigneous rocks of various compositions occur as dykes, sills, and lava flows within this group. The ?Upper Permian–Mesozoic age Ardicli Group unconformably overlies the Sizma Group and is composed of, from bottom to top, coarse metaclastics, a metaclastic–metacarbonate alternation, a thick sequence of metacarbonate, and alternating units of metachert, metacarbonates and metaclastics. Although pre-Alpine overthrusts can be recognized in the Sizma Group, intense Alpine deformation has overprinted and obliterated earlier structures. Both the Sizma and Ardicli Groups were deformed, and metamorphosed during the Alpine orogeny. Within the study area evidence for four phases of deformation and folding is found. The first phase of deformation resulted in the major Ertugrul Syncline, overturned tight to isoclinal and minor folding, and penetrative axial planar cleavage developed during the Alpine crustal shortening at the peak of metamorphism. Depending on rock type, syntectonic crystallization, rotation, and flattening of grains and pressure solution were the main deformation mechanisms. During the F2-phase, continued crustal shortening produced coaxial Type-3 refolded folds, which can generally be observed in outcrop with associated crenulation cleavage (S2). Refolding of earlier folds by the noncoaxial F3-folding event generated Type-2 interference patterns and the major Meydan Synform which is the largest map-scale structure within the study area. Phase 3 structures also include crenulation cleavage (S3) and conjugate kink folds. Further shortening during phase 4 deformation also resulted in crenulation cleavage and conjugate kink folds. According to thin section observations, phases 2–4 crenulation cleavages are mainly the result of microfolding with pressure solution and mineral growth.  相似文献   

18.
扬子板块海相中古生界盆地的递进变形改造   总被引:2,自引:0,他引:2  
印支—早燕山期由于古特提斯洋盆的关闭,扬子板块大陆边缘受到了挤压与碰撞作用,在板内形成了江南-雪峰基底拆离体(A带),从SE向NW方向的大规模水平推挤作用使扬子板内中古生界盆地发生了由强及弱的递进(衰减)变形改造。在其前缘形成了高角度冲断层-断弯褶皱带(B带)、逆掩断层-断展褶皱带(C带)、滑脱断层-滑脱褶皱带(D带)、共轭冲断层-膝折褶皱带(E带)和古隆起-单斜带(F带);在其后缘则形成了滑覆断层-滑脱褶皱带(G带)。不同的构造变形区带具有不同的水平位移量、压缩变形量,不同的逆冲断裂、褶皱的空间配置和不同的构造圈闭类型、保存条件,因而控制了不同类型的油气聚集与分布。  相似文献   

19.
Pseudotachylyte in the Cima di Gratera ophiolite, Alpine Corsica, is distributed in the peridotite unit and in the overlying metagabbro unit and was formed under blueschist to eclogite metamorphic facies conditions, corresponding to a 60–90 km depth range. Peridotite pseudotachylyte is clustered in fault zones either beneath the tectonic contact with overlying metagabbros or at short distance from it. Fault zones are either parallel to the contact or make an angle of 55° to it. Displacement sense criteria associated with fault veins indicate top-to-the-west or top-to-the-northwest reverse senses. Cataclasite flanking most veins was formed before or coevally with frictional melting and likely mechanically weakened the peridotite, facilitating subsequent seismic rupture. In the basal part of the metagabbro unit, post-mylonitization pseudotachylyte can be distinguished from pre-mylonitization pseudotachylyte formed earlier. In the equant metagabbro above the mylonitic sole, only one episode of pseudotachylyte formation can be identified. Kinematics associated with metagabbro pseudotachylyte remain unknown. The geometry and kinematics of the pseudotachylyte veins from the peridotite unit and to a lesser extent from the metagabbro unit are similar to modern seismic ruptures of the upper parts of the Wadati-Benioff zones such as in the Pacific plate beneath NE Japan.  相似文献   

20.
Internal regions of orogenic belts may be characterized by an alignment of fold axes with mineral elongation lineations. This relationship is commonly interpreted as representing progressive tightening and rotation towards the shear direction of early buckle folds, the hinges of which were initiated orthogonal to this direction. Detailed structural analysis of lower amphibolite facies Dalradian metasediments of the Ballybofey (fold) Nappe, north-west Ireland, shows that an intense S3 schistosity is developed axial planar to mesoscopic and minor F3 folds. In areas of low D3 strain, F3 fold axes plunge gently towards the north-east, whereas in regions of greater strain plunges are towards the south-east subparallel to the constant mineral lineation. Minor folds which initiated at angles of 70–80° from the mineral lineation subsequently rotated towards the shear direction in a consistent clockwise sense. Progressive and variable non-coaxial deformation oblique to the original mean F3 orientation has resulted in a unimodal distribution pattern of fold axes. Analysis of the angular rotation of fold axes enables estimates of the bulk shear strain to be evaluated and models of progressive deformation to be assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号