首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiac troponin (Tn) I (CTnI), compared with skeletal TnI, contains extra amino acids (32 to 33) at its amino terminus, including two adjacent serine residues. These two serine residues are believed to be phosphorylated by protein kinase A (PKA) upon stimulation of the heart by beta-agonists. In this study, we found that phosphorylation of a cardiac skinned muscle preparation by PKA, mainly at CTnI, results in a decrease in the Ca2+ sensitivity of muscle contraction. The pCa50 decreased by approximately 0.27 +/- 0.06 pCa units upon phosphorylation. To study cardiac muscle relaxation, we used diazo-2, a photolabile Ca2+ chelator with a low Ca2+ affinity in its intact form that is converted to a high-affinity form after photolysis. We found that the rate of cardiac muscle relaxation increased from a time of half-relaxation (t1/2) = 110 +/- 10 milliseconds to t1/2 = 70 +/- 8 milliseconds after CTnI phosphorylation. This result demonstrates that CTnI phosphorylation can be linked with the increased rate of muscle relaxation in a relatively intact muscle preparation. Since CTnI phosphorylation has been shown previously to affect the Ca2+ affinity and Ca2+ off-rate of CTnC in vitro, it is likely that the faster relaxation seen here reflects faster dissociation of Ca2+ from cardiac TnC (CTnC). Model calculations show that increased dissociation of Ca2+ from CTnC, coupled with the faster uptake of Ca2+ by the sarcoplasmic reticulum stimulated by PKA phosphorylation of phospholamban, can account for the faster relaxation seen in the inotropic response of the heart to catecholamines.  相似文献   

2.
Intracellular calcium ion ([Ca2+]i) transients were measured in voltage-clamped rat cardiac myocytes with fura-2 or furaptra to quantitate rapid changes in [Ca2+]i. Patch electrode solutions contained the K+ salt of fura-2 (50 microM) or furaptra (300 microM). With identical experimental conditions, peak amplitude of stimulated [Ca2+]i transients in furaptra-loaded myocytes was 4- to 6-fold greater than that in fura-2-loaded cells. To determine the reason for this discrepancy, intracellular fura-2 Ca2+ buffering, kinetics of Ca2+ binding, and optical properties were examined. Decreasing cellular fura-2 concentration by lowering electrode fura-2 concentration 5-fold, decreased the difference between the amplitudes of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes by twofold. Thus, fura-2 buffers [Ca2+]i under these conditions; however, Ca2+ buffering is not the only factor that explains the different amplitudes of the [Ca2+]i transients measured with these indicators. From the temporal comparison of the [Ca2+]i transients measured with fura-2 and furaptra, the apparent reverse rate constant for Ca2+ binding of fura-2 was at least 65s-1, much faster than previously reported in skeletal muscle fibers. These binding kinetics do not explain the difference in the size of the [Ca2+]i transients reported by fura-2 and furaptra. Parameters for fura-2 calibration, Rmin, Rmax, and beta, were obtained in salt solutions (in vitro) and in myocytes exposed to the Ca2+ ionophore, 4-Br A23187, in EGTA-buffered solutions (in situ). Calibration of fura-2 fluorescence signals with these in situ parameters yielded [Ca2+]i transients whose peak amplitude was 50-100% larger than those calculated with in vitro parameters. Thus, in vitro calibration of fura-2 fluorescence significantly underestimates the amplitude of the [Ca2+]i transient. These data suggest that the difference in amplitude of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes is due, in part, to Ca2+ buffering by fura-2 and use of in vitro calibration parameters.  相似文献   

3.
A high-speed imaging technique was used to investigate the effects of inhibitors and activators of protein kinase C (PKC) on the [Ca2+]i transients and contraction of fura-2 loaded rat ventricular cardiac myocytes. The amplitude of the [Ca2+]i transient was reduced following treatment with 100 nM phorbol 12,13-dibutyrate (PDBu), whereas the PKC inhibitors staurosporine (0.5 microM) and calphostin C (10 microM) increased [Ca2+]i transient amplitude, elevated basal [Ca2+]i and slowed the decay of the [Ca2+]i transient. These changes were paralleled by similar alterations in the rate and extent of cell shortening. The activity of nitrendipine-sensitive Ca2+ channels was monitored indirectly as the rate of Mn2+ quench of cytosolic fura-2 in electrically-paced cells. PDBu reduced Mn2+ influx by six-fold, whereas staurosporine and calphostin C increased the influx rate by eight-fold and seven-fold over basal quench, respectively. The caffeine releasable Ca2+ pool was reduced in the presence of PDBu and increased transiently in presence of staurosporine. The effects of PKC activation and inhibition on sarcoplasmic reticulum Ca2+ content may be secondary to alterations of sarcolemmal Ca2+ influx. However, the PKC inhibitors also decreased the rate of sarcoplasmic reticulum Ca2+ uptake in permeabilized myocytes, suggesting that a direct effect of PKC on the sarcoplasmic reticulum may contribute to the prolongation of the [Ca2+]i transient under these conditions. The present work demonstrates that basal PKC activity has a potent depressant effect, mediated primarily through inhibition of sarcolemmal Ca2+ influx, which may play a key role in setting the basal tone of cardiac muscle.  相似文献   

4.
Semotiadil fumarate (SD-3211), a Ca2+ channel blocker of benzothiazine derivative and its (S)-(-)-enantiomer (SD-3212), inhibited K(+)- and norepinephrine (NE)-induced contractions in isolated rat aortas. Inhibition of NE contraction induced by both drugs was greater than that induced by diltiazem or bepridil, whereas inhibition of K(+)-contraction was similar to that induced by diltiazem or bepridil. Semotiadil and SD-3212 (10 microM) inhibited the increase in cytosolic Ca2+ ([Ca2+]i) induced by 65.4 mM K+ in fura-2-loaded preparations as well as diltiazem and bepridil (10 microM). On the other hand, semotiadil and SD-3212 (10 microM) inhibited only the early phase of increase in [Ca2+]i induced by 1 microM NE. After 5 min, no significant effect on [Ca2+]i was observed with these compounds despite the significant decrease in the contraction. In contrast to these compounds, diltiazem and bepridil 10 microM affected neither the increase in [Ca2+]i nor the contraction induced by NE. Semotiadil and SD-3212 inhibited the transient contraction induced by 1 microM NE in the absence of external Ca2+. Both compounds partially but significantly inhibited the NE-induced contraction in nifedipine-treated muscles. These results suggest that semotiadil and SD-3212 inhibit contractions of vascular smooth muscle (VSM) not only through blockade of voltage-dependent Ca2+ channels but also through other mechanisms, such as inhibition of Ca2+ release from Ca2+ stores or decrease in sensitivity of the contractile elements to Ca2+.  相似文献   

5.
In bovine tracheal smooth muscle, carbachol (CCh, 1 microM) and high K+ (72.7 mM) induced sustained increases in cytosolic Ca2+ level ([Ca2+]i), myosin light chain (MLC) phosphorylation and force of contraction. Forskolin (FK, 1-10 microM) inhibited the CCh-induced increase in [Ca2+]i, MLC phosphorylation and force in parallel. In contrast, FK inhibited the high K(+)-induced contraction and MLC phosphorylation without changing [Ca2+]i. In the absence of extracellular Ca2+ (with 0.5 mM EGTA), CCh (10 microM) and caffeine (20 mM) induced transient increase in [Ca2+]i and contractile force by releasing Ca2+ from cellular store. FK strongly inhibited the CCh-induced Ca2+ transient, but failed to inhibit the caffeine-induced Ca2+ transient. In the absence of external Ca2+, 12-deoxyphorbol 13-isobutylate (DPB, 1 microM) induced sustained contraction without increase in [Ca2+]i and MLC phosphorylation. FK inhibited this contraction without changing [Ca2+]i. In permeabilized muscle, Ca2+ induced contraction in a concentration-dependent manner. FK (10 microM) and cAMP (1-100 microM) shifted the Ca(2+)-force curve to the higher Ca2+ levels. CCh with GTP, GTP gamma S or DPB enhanced contraction in the presence of constant level of Ca2+. Forskolin and cAMP also inhibited the enhanced contractions in the permeabilized muscle. In the permeabilized, thiophosphorylated muscle, ATP induced contraction in the absence of Ca2+. cAMP (300 microM) had no effect on this contraction. These results suggest that forskolin inhibits agonist-induced contraction in tracheal smooth muscle by multiple mechanisms of action; 1) inhibition of MLC phosphorylation by reducing Ca2+ influx and Ca2+ release, 2) inhibition of MLC phosphorylation by changing the MLC kinase/phosphatase balance, and 3) inhibition of regulatory mechanism which is not dependent on MLC phosphorylation.  相似文献   

6.
When free calcium is rapidly removed from skinned fibres using the photolabile Ca2+ chelator diazo-2, they relax without an appreciable change in sarcomere length (相似文献   

7.
Smooth muscle contraction is regulated primarily by the reversible phosphorylation of myosin triggered by an increase in sarcoplasmic free Ca2+ concentration ([Ca2+]i). Contraction can, however, be modulated by other signal transduction pathways, one of which involves the thin filament-associated protein calponin. The h1 (basic) isoform of calponin binds to actin with high affinity and is expressed specifically in smooth muscle at a molar ratio to actin of 1:7. Calponin inhibits (i) the actin-activated MgATPase activity of smooth muscle myosin (the cross-bridge cycling rate) via its interaction with actin, (ii) the movement of actin filaments over immobilized myosin in the in vitro motility assay, and (iii) force development or shortening velocity in permeabilized smooth muscle strips and single cells. These inhibitory effects of calponin can be alleviated by protein kinase C (PKC)-catalysed phosphorylation and restored following dephosphorylation by a type 2A phosphatase. Three physiological roles of calponin can be considered based on its in vitro functional properties: (i) maintenance of relaxation at resting [Ca2+]i, (ii) energy conservation during prolonged contractions, and (iii) Ca(2+)-independent contraction mediated by phosphorylation of calponin by PKC epsilon, a Ca(2+)-independent isoenzyme of PKC.  相似文献   

8.
Intracellular pH (pHi) is elucidated to be an important regulator of various cell functions, but the role of pHi in smooth muscle contraction remains to be clarified. The purpose of the present study is to examine the effects of cell alkalinization by exposure to NH4Cl on cytosolic Ca2+ level ([Ca2+]i) and on muscle tone. We attempted simultaneous measurements of both [Ca2+]i and contractile force in rat isolated thoracic aorta from which the endothelium was removed. NH4Cl (10-80 mM) increased both [Ca2+]i and muscle tone in the presence of external Ca2+. These responses were reproducible. The removal of Ca2+ from the nutrient solution partially inhibited the rise in [Ca2+]i and the smooth muscle contraction induced by NH4Cl. In addition, the Ca2+ channel blocker verapamil also partially attenuated the responses to NH4Cl. The NH4Cl-induced responses were gradually reduced as NH4Cl was repeatedly added in a Ca(2+)-free solution. Norepinephrine (NE, 1 microM) induced a transient increase in [Ca2+]i and sustained contraction in the absence of external Ca2+, and the subsequent application of NE had little effect on [Ca2+]i. After internal Ca2+ stores were depleted by exposure to NE, the subsequent application of NH4Cl induced increases in [Ca2+]i and tension of the aorta in a Ca(2+)-free solution. These results suggest that NH4Cl mainly evokes Ca2+ release from the internal Ca2+ stores that are not linked with adrenergic alpha-receptor and causes Ca2+ influx through voltage-dependent Ca2+ channels in the vascular smooth muscle.  相似文献   

9.
1. The mechanisms of vascular tone regulation by extracellular uridine 5'-triphosphate (UTP) were investigated in bovine middle cerebral arterial strips. Changes in cytosolic Ca2+ concentration ([Ca2+]i) and force were simultaneously monitored by use of front-surface fluorometry of fura-2. 2. In the arterial strips without endothelium, UTP (0.1 microM-1 mM) induced contraction in a concentration-dependent manner. However, when the endothelium was kept intact, cumulative application of UTP (0.1-100 microM) (and only at 1 mM) induced a modest phasic contraction in arterial strips. This endothelium-dependent reduction of the UTP-induced contraction was abolished by 100 microM N omega-nitro-L-arginine (L-NOARG) but not by 10 microM indomethacin. In the presence of intact endothelium, UTP (30 microM) induced a transient relaxation of the strips precontracted with 30 nM U-46619 (a stable analogue of thromboxane A2), which was completely inhibited by pretreatment with L-NOARG but not with indomethacin. 3. In the endothelium-denuded strips, the contractile response to UTP was abolished by desensitization to either ATP gamma S or ATP (P2U receptor agonists), but not by desensitization to alpha, beta-methylene-ATP (P2x receptor agonist) or to 2-methylthio-ATP (P2Y receptor agonist). Desensitization to UTP abolished the contractile response to ATP. 4. In the endothelium-denuded artery, a single dose application of UTP induced an initial transient, and subsequently lower but sustained increase in [Ca2+]i and force. In the absence of extracellular Ca2+, UTP induced only the initial transient increases in [Ca2+]i and force, while the sustained increases in [Ca2+]i and force were abolished. UTP (1 mM) had no effect on the basic [Ca2+]i-force relationship obtained on cumulative application of extracellular Ca2+ at steady state of 118 mM K(+)-depolarization-induced contraction. 5. We conclude that in the presence of an intact endothelium, UTP-induced relaxation of preconstricted middle cerebral artery is mainly mediated indirectly, by the production of an endothelium-derived relaxing factor, but at high doses of UTP, vascular smooth muscle contraction is mediated directly via activation of P2U purinoceptor and [Ca2+]i elevation without Ca(2+)-sensitization of the contractile apparatus. UTP may thus exert a dual regulatory effect upon cerebrovascular tone, but in cases where the endothelium is impaired, it may also act as a significant vasoconstrictor.  相似文献   

10.
The precise mechanisms by which nitric oxide (NO) decreases free [Ca2+]i, inhibits Ca2+ influx, and relaxes vascular smooth muscle are poorly understood. In rabbit and mouse aorta, agonist-induced contractions and increases in [Ca2+]i were resistant to nifedipine, suggesting Ca2+ entry through non-L-type Ca2+ channels. Relaxations to NO were inhibited by thapsigargin (TG) or cyclopiazonic acid (CPA) indicating the involvement of sarcoplasmic reticulum ATPase (SERCA). Studies of the effect of NO on [Ca2+]i and the rate of Mn2+ influx with fura-2 fluorometry in rabbit aortic smooth muscle cells in primary culture were designed to test how SERCA is involved in mediating the response to NO. When cells were stimulated with angiotensin II (AII), NO accelerated the removal of Ca2+ from the cytoplasm, decreased [Ca2+]i, and inhibited Ca2+ and Mn2+ influx. Inhibition of SERCA abolished all the effects of NO. In contrast, inhibition of the Na+/Ca2+exchanger or the plasma membrane Ca2+ ATPase had no influence on the ability of NO to decrease [Ca2+]i. NO maximally decreased [Ca2+]i within 5 s, whereas significant inhibition of AII-induced Ca2+ and Mn2+ influx required more than 15 s. The inhibition of cation influx strictly depended on [Ca2+]o and functional SERCA, suggesting that during the delay before NO inhibits Ca2+ influx, the influx of Ca2+ and the uptake into intracellular stores are required. In the absence of [Ca2+]o, NO diminished the AII-induced [Ca2+]i transient by a SERCA-dependent mechanism and increased the amount of Ca2+ in the stores subsequently released by ionomycin. The present study indicates that the initial rapid decrease in [Ca2+]i caused by NO in vascular smooth muscle is accounted for by the uptake of Ca2+ by SERCA into intracellular stores. It is proposed that the refilling of the stores inhibits store-operated Ca2+ influx through non-L-type Ca2+ conducting ion channels and that this maintains the decrease in [Ca2+]i and NO-induced relaxation.  相似文献   

11.
A single fibre bundle from rat soleus muscle was chemically skinned with saponin and the transfer of myosin heads from the thick filaments to the thin filaments at a sarcomere length of 2.4 microm was measured as a function of Ca2+ concentration using an x-ray diffraction method at 4-7 degrees C. In the relaxed state, the 1,0 spacing was 42.08 nm. The spacing showed no significant decrease when the Ca2+ concentration was below the threshold (-log10 [Ca2+] or pCa 5.8). No significant transfer of the myosin heads occurred when the Ca2+concentration was below the threshold (pCa 5.8). When the muscle was maximally activated at pCa 4.4, the spacing decreased to 40.35 nm. During the maximum isometric contraction at pCa 4.4, 54. 9 +/- 6.5% (+/-SE of the mean) of the myosin heads were transferred to the thin filaments. The transfer of the myosin heads was approximately proportional to relative tension. These results suggest that myosin heads of both fast-twitch and slow-twitch skeletal muscles transferred on the common movement as a function of Ca2+ concentration.  相似文献   

12.
The effects of endurance run training on Na+-dependent Ca2+ regulation in rat left ventricular myocytes were examined. Myocytes were isolated from sedentary and trained rats and loaded with fura 2. Contractile dynamics and fluorescence ratio transients were recorded during electrical pacing at 0.5 Hz, 2 mM extracellular Ca2+ concentration, and 29 degreesC. Resting and peak cytosolic Ca2+ concentration ([Ca2+]c) did not change with exercise training. However, resting and peak [Ca2+]c increased significantly in both groups during 5 min of continuous pacing, although diastolic [Ca2+]c in the trained group was less susceptible to this elevation of intracellular Ca2+. Run training also significantly reduced the rate of [Ca2+]c decay during relaxation. Myocytes were then exposed to 10 mM caffeine in the absence of external Na+ or Ca2+ to trigger sarcoplasmic reticular Ca2+ release and to suppress cellular Ca2+ efflux. This maneuver elicited an elevated steady-state [Ca2+]c. External Na+ was then added, and the rate of [Ca2+]c clearance was determined. Run training significantly reduced the rate of Na+-dependent clearance of [Ca2+]c during the caffeine-induced contractures. These data demonstrate that the removal of cytosolic Ca2+ was depressed with exercise training under these experimental conditions and may be specifically reflective of a training-induced decrease in the rate of cytosolic Ca2+ removal via Na+/Ca2+ exchange and/or in the amount of Ca2+ moved across the sarcolemma during a contraction.  相似文献   

13.
Prostaglandin F2alpha was tested to determine (a) whether its effect on intracellular Ca2+ levels ([Ca2+]i) and force in vascular smooth muscle was mediated through activation of the thromboxane A2 and/or prostaglandin receptor, and (b) the relative roles of Ca2+ influx via L-type and non-L-type Ca2+ channels in prostaglandin receptor-mediated contraction. [Ca2+]i and force were measured simultaneously in fura-2-loaded rat aortic strips. The thromboxane A2 receptor antagonist, SQ29548 ([1S]-1a,2b(5Z),3b,4a-7-(3-[2-[(phenylamino)carbonyl] hydrazinomethyl)-7-oxobicyclo-[2.2.1]hept-2-yl-5-heptenoic acid), prevented the prostaglandin F2alpha-induced plateau [Ca2+]i elevation and force by 80-90%, while abolishing these responses due to the thromboxane A2 receptor agonist, U46619 (9,11-dideoxy-9alpha,11alpha-methanoepoxy prostaglandin F2alpha). Prostaglandin F2alpha (+ SQ29548)-induced plateau [Ca2+]i elevation and force were not inhibited by verapamil. Ni2+, a non-selective cation channel blocker, in the presence of verapamil, abolished the prostaglandin F2alpha (+ SQ29548)-elevated [Ca2+]i, while the contraction was only partially inhibited. These results suggest that, in rat aorta, (1) elevated [Ca2+]i and force due to high prostaglandin F2alpha concentrations largely results from thromboxane A2 receptor activation, and (2) the prostaglandin component of the prostaglandin F2alpha-induced contraction is dependent on Ca2+ influx via non-L-type channels.  相似文献   

14.
The phosphatase inhibitor okadaic acid (OA) was used to study the relationship between [Ca2+], rates of phosphorylation/dephosphorylation and the mechanical properties of smooth muscle fibres. Force/velocity relationships were determined with the isotonic quick release technique in chemically skinned guinea-pig taenia coli muscles at 22 degrees C. In the maximally thiophosphorylated muscle neither OA (10 microM) nor Ca2+ (increase from pCa 9.0 to pCa 4.5) influenced the force-velocity relationship. When the degree of activation was altered by varying [Ca2+] in the presence of 0.5 microM calmodulin, both force and the maximal shortening velocity (Vmax) were altered. At pCa 5.75, at which force was about 35% of the maximal at pCa 4.5, Vmax was 55% of the maximal value. When OA was introduced into fibres at pCa 6.0, force was increased from less than 5% to 100% of the maximal force obtained in pCa 4.5. The relationship between the degree of myosin light chain phosphorylation and force was similar in the two types of activation; varied [OA] at constant [Ca2+] and at varied [Ca2+]. The relation between force and Vmax when the degree of activation was altered with OA was almost identical to that obtained with varied [Ca2+]. The results show that Ca2+ and OA do not influence force or Vmax in the maximally phosphorylated state and suggest that the level of myosin light chain phosphorylation is the major factor determining Vmax. The finding that the relationship between force and Vmax was similar when activation was altered with OA and Ca2+ suggests, however, that alterations in the absolute rates of phosphorylation and dephosphorylation at a constant phosphorylation level do not influence the mechanical properties of the skinned smooth muscle fibres.  相似文献   

15.
Isometric ATP consumption and force were investigated in mechanically skinned fibres from iliofibularis muscle of Xenopus laevis. Measurements were performed at different [Ca2+], in the presence and absence of caffeine (5 nM). In weakly Ca2+-buffered solutions without caffeine, spontaneous oscillations in force and ATPase activity occurred. The repetition frequency was [Ca2+]-and temperature-dependent. The Ca2+ threshold (+/- SEM) for the oscillations corresponded to a pCa of 6.5 +/- 0.1. The maximum ATP consumption associated with calcium uptake by the sarcoplasmic reticulum (SR) reached during the oscillations was similar to the activity under steady-state conditions at saturating calcium concentrations in the presence of caffeine. Maximum activity was reached when the force relaxation was almost complete. The calculated amount of Ca2+ taken up by the SR during a complete cycle corresponded to 5.4 +/ 0.4 mmol per litre cell volume. In strongly Ca2+-buffered solutions, caffeine enhanced the calcium sensitivity of the contractile apparatus and, at low calcium concentrations, SR Ca uptake. These results suggest that when the SR is heavily loaded by net Ca uptake, there is a massive calcium-induced calcium release. Subsequent net Ca uptake by the SR then gives rise to the periodic nature of the calcium transient.  相似文献   

16.
The steady state relation between cytoplasmic Ca2+ concentration ([Ca2+]i) and force was studied in intact skeletal muscle fibers of frogs. Intact twitch fibers were injected with the dextran-conjugated Ca2+ indicator, fura dextran, and the fluorescence signals of fura dextran were converted to [Ca2+]i using calibration parameters previously estimated in permeabilized muscle fibers (Konishi and Watanabe. 1995. J. Gen. Physiol. 106:1123-1150). In the first series of experiments, [Ca2+]i and isometric force were simultaneously measured during high K+ depolarization. Slow changes in [Ca2+]i and force induced by 15-30 mM K+ appeared to be in equilibrium, as instantaneous [Ca2+]i versus force plot tracked the common path in the rising and relaxation phases of K+ contractures. In the second series of experiments, 2,5-di-tert-butylhydroquinone (TBQ), an inhibitor of the sarcoplasmic reticulum Ca2+ pump, was used to decrease the rate of decline of [Ca2+]i after tetanic stimulation. The decay time courses of both [Ca2+]i and force were dose-dependently slowed by TBQ up to 5 micro M; the instantaneous [Ca2+]i- force relations were nearly identical at >/=1 micro M TBQ, suggesting that the change in [Ca2+]i was slow enough to reach equilibrium with force. The [Ca2+]i-force data obtained from the two types of experiments were consistent with the Hill curve using a Hill coefficient of 3.2-3.9 and [Ca2+]i for half activation (Ca50) of 1.5-1.7 micro M. However, if fura dextran reacts with Ca2+ with a 2.5-fold greater Kd as previously estimated from the kinetic fitting (Konishi and Watanabe. 1995. J. Gen. Physiol. 106:1123-1150), Ca50 would be 3.7-4.2 micro M. We also studied the [Ca2+]-force relation in skinned fibers under similar experimental conditions. The average Hill coefficient and Ca50 were estimated to be 3.3 and 1.8 microM, respectively. Although uncertainties remain about the precise levels of [Ca2+]i, we conclude that the steady state force is a 3rd to 4th power function of [Ca2+]i, and Ca50 is in the low micromolar range in intact frog muscle fibers, which is in reasonable agreement with results obtained from skinned fibers.  相似文献   

17.
To investigate the role of myosin light chain kinase (MLCK) in phasic contractions of intact smooth muscle, we have applied Wortmannin, an MLCK inhibitor, to strips of guinea-pig ureter. Simultaneous measurements of electrical activity, intracellular [Ca2+] ([Ca2+]i) and phasic force showed that Wortmannin (1-4 microM) abolishes force with little or no change in [Ca2+]i and electrical activity. High-K+-induced force production was also abolished by Wortmannin. The effects of Wortmannin were dose dependent - at lower concentrations (100 nM) Wortmannin reduced phasic contractility by 40-50%. It also significantly increased the delay between the Ca2+ peak and force production. These data show that, in phasic smooth muscle, inhibition of MLCK causes contraction to fail, despite normal electrical activity and Ca2+ transients. Our results also indicate that Wortmannin has no secondary effects and that other means of producing force, independent of myosin phosphorylation, are negligible in this tissue. The increased lag between the rise of Ca2+ and force production when MLCK is inhibited was surprising and suggests that post-phosphorylation steps may play a larger role in the delay than was previously considered.  相似文献   

18.
Smooth muscle contraction is primarily regulated not only by changes in cytosolic Ca2+ concentrations ([Ca2+]i) but also by changes in the force/[Ca2+]i ratio. The use of membrane-permeabilization technique facilitated demonstration of an increase in the level of force at constant [Ca2+]i (Ca2+ sensitization). It was clarified that Rho-associated kinase (Rho-kinase) is a novel mediator of Ca2+ sensitization of the smooth muscle contraction, by introducing the recombinant catalytic domain of Rho-kinase into the cytosol of vascular smooth muscle permeabilized with beta-escin. This review article focuses on novel mechanisms, by which activation of receptor-coupled G-protein(s) increases Ca2+ sensitivity of the contractile apparatus in smooth muscle: Rho-kinase and protein kinase C.  相似文献   

19.
1. Simultaneous recordings of tension and [Ca2+]i during NANC-mediated relaxation were made in the rat anococcygeus muscle under various conditions. 2. In muscles precontracted with guanethidine, nitrergic stimulations at 2 Hz produced a rapid decrease in both the tension and [Ca2+]i. 3. The nitric oxide synthase inhibitor, NG-nitro-L-Arginine (NOLA, 100 mumol/L) completely abolished the decreases in the [Ca2+]i and force response of the NANC-mediated relaxation. 4. Noradrenergic-mediated contractions elicited by electrical field stimulation were potentiated by the addition of NOLA. In the absence of NOLA, the motor responses were larger in magnitude at 10 Hz stimulation than at 2 Hz. After NOLA, both the force response and the associated rise in [Ca2+]i were substantially increased in comparison to the control stimulations. Proportionately the potentiation of the 2 Hz response was of a far greater magnitude than that of the 10 Hz response. 5. The guanylate cyclase inhibitor methylene blue (10 mumol/L), partially inhibited the force and [Ca2+]i response of the NANC relaxation. 6. Following exposure of the muscles to the sarcoplasmic reticulum Ca(2+)-ATPase inhibitor, cyclopiazonic acid, (10 mumol/L) the responses to NANC stimulation were inhibited. The attenuated relaxation response displayed a bi-phasic timecourse and the Ca2+ change in comparison to that of the control was markedly smaller. In some cases, a relaxation was observed with no detectable change in the [Ca2+]i. 7. The results suggest that part of the relaxation response observed with NANC-mediated relaxation in the rat anococcygeus is dependent on Ca2+ sequestration into the sarcoplasmic reticulum. However, other Ca2+ lowering mechanisms and possible Ca2+ independent mechanisms may also contribute to the NANC relaxation response.  相似文献   

20.
Stimulation of pancreatic beta-cells by glucose gives rise to an increase in the cytoplasmic free calcium concentration ([Ca2+]i) and exocytosis of insulin. Cyclic adenosine 5'-diphosphate ribose (cADPR), a metabolite of beta-NAD+, has been reported to increase [Ca2+]i in pancreatic beta-cells by releasing Ca2+ from inositol 1,4,5-trisphosphate-insensitive intracellular stores. In the present study, we have examined the role of cADPR in glucose-mediated increases in [Ca2+]i and insulin exocytosis. Dispersed ob/ob mouse beta-cell aggregates were either pressure microinjected with fura-2 salt or loaded with fura-2 acetoxymethyl ester, and [Ca2+]i was monitored by microfluorimetry. Microinjection of beta-NAD+ into fura-2-loaded beta-cells did not increase [Ca2+]i nor did it alter the cells' subsequent [Ca2+]i response to glucose. Cells microinjected with the cADPR antagonist 8NH2-cADPR increased [Ca2+]i in response to glucose equally well as those injected with cADPR. Finally, the ability of cADPR to promote exocytosis of insulin in electropermeabilized beta-cells was investigated. cADPR on its own did not increase insulin secretion nor did it potentiate Ca2+-induced insulin secretion. We conclude that cADPR neither plays a significant role in glucose-mediated increases in [Ca2+]i nor interacts directly with the molecular mechanisms regulating exocytosis of insulin in normal pancreatic beta-cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号