首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ablative nanocomposites based on nanoclay‐dispersed addition curable propargylated phenolic novolac (ACPR) resin, reinforced with chopped silica fiber, were investigated for their thermal response behavior under simulated heat flux conditions corresponding to typical atmospheric re‐entry conditions. Organically modified nanoclay (Cloisite 30B) was incorporated to different extents (1–10%) in the ACPR resin matrix containing silica fiber to form the composite. The composites displayed optimum mechanical properties at around 3 wt% of nanoclay loading. The resultant composites were evaluated for their ablative characteristics as well as mechanical, thermal and thermo‐physical properties. The reinforcing effect of nanoclay was established and correlated to the composition. The mechanical properties of the composites and its pyrolysed product improved at moderate nanoclay incorporation. Plasma arc jet studies revealed that front wall temperature is lowered by 20°C and that at backwall by 10–13°C for the 3 wt% nanoclay‐incorporated composites due to impedance by nanoclay for the heat conduction. Nanoclay diminished the coefficient of thermal expansion by almost 50% and also reduced the flammability of the composites. The trend in mechanical properties was correlated to the microstructural morphology of the composites. The nanomodification conferred better strength to the pyrolysed composites. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Nonaqueous synthesis of nanosilica in diglycidyl ether of bisphenol‐A epoxy (DGEBA) resin has been successfully achieved in this study by reacting tetraethoxysilane (TEOS) directly with DGEBA epoxy matrix, at 80 °C for 4 h under the catalysis of boron trifluoride monoethylamine (BF3MEA). BF3MEA was proved to be an effective catalyst for the formation of nanosilica in DGEBA epoxy under thermal heating process. FTIR and 29Si NMR spectra have been used to characterize the structures of nanosilica obtained from this direct thermal synthetic process. The morphology of the nanosilica synthesized in epoxy matrix has also been analyzed by TEM and SEM studies. The effects of both the concentration of BF3MEA catalyst and amount of TEOS on the diameters of nanosilica in the DGEBA epoxy resin have been discussed in this study. From the DSC analysis, it was found that the nanosilica containing epoxy exhibited the same curing profile as pure epoxy resin, during the curing reaction with 4,4′‐diaminodiphenysulfone (DDS). The thermal‐cured epoxy–nanosilica composites from 40% of TEOS exhibited high glass transition temperature of 221 °C, which was almost 50 °C higher than that of pure DGEBA–DDS–BF3MEA‐cured resin network. Almost 60 °C increase in thermal degradation temperature has been observed during the TGA of the DDS‐cured epoxy–nanosilica composites containing 40% of TEOS. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 757–768, 2006  相似文献   

3.
Novel propargyl that contains phenolic resins via azo‐coupling reaction was synthesized. Peculiarities of curing process were investigated by differential scanning calorimetry analysis. Polymerization of resins with azo groups was estimated to be affected by radicals obtained at resin decomposition causing 10°C peak shift to lower temperatures in comparison with resin containing only propargyl group. At the same time, polymerization of triple propargyl bond was shown to not proceed at radical initiation until Cleisen rearrangement and chromene formation. Thermogravimetric analysis revealed increase of thermal stability by 170–190°C and char yield by up to 20% for modified resins in comparison with original novolac resin. Heat deflection temperature estimated by dynamic mechanical analysis was also shown to be increased by at least 110°C for modified resins in comparison with novolac resin. All the synthesized resins are soluble in acetone and used for preparation of unidirectional glass fiber‐based composites. Flexural strength and modulus for modified resins‐based composites were shown to increase by at least 25% and 10% correspondingly in comparison with novolac‐based composite. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A novel hydroxyl‐ethynyl‐arene (HEA) resin was synthesized via Aldol condensation and Sonogashira reaction. The structure of the obtained resin was confirmed by the techniques of mass spectroscopy (MS), gel permeation chromatography (GPC), proton nuclear magnetic resonance spectroscopy (1H‐NMR), Fourier transform infrared spectroscopy, (FT‐IR) and elemental analysis (EA). Differential scanning calorimetry (DSC) results showed an exotherm at the temperature range of 187°C–245°C, attributable to crosslinking reaction of the acetylene groups. After thermal cure, the obtained cured resin possessed excellent thermal stability. Thermal gravimetric analysis (TGA) in nitrogen showed the Td5 (temperature of 5% weight loss) was about 400°C, and the char yield in nitrogen was about 78% at 900°C. The laminate composite of HEA resin was prepared and its mechanical and thermal properties were determined. The usefulness of the HEA resin as matrix for ablative composite was evaluated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A highly deuterated novolac‐type phenolic resin was prepared by polycondensation of deuterated phenol and formaldehyde using oxalic acid as an acid catalyst. The polycondensation of deuterated monomers and the formation of the highly deuterated phenolic resin were confirmed by the gel permeation chromatography, IR, and 1H NMR analyses. With the exception of hydroxyl groups, the degree of deuteration was estimated to be more than 98%. The polymer conformation in THF solution was evaluated by the scaling exponent of the Mark–Houwink–Sakurada equation. The exponent of the deuterated phenolic resin is 0.26 in THF at 40 °C and is close to that of a nondeuterated phenolic resin, which suggests that phenolic resins behave like a compact sphere irrespective of deuteration. The curing behavior of the deuterated phenolic resin with hexamethylenetetramine was confirmed by differential scanning calorimetry analysis. The cured highly deuterated phenolic resin exhibits a lower incoherent neutron scattering background than that of the nondeuterated phenolic resin, which suggests that the former is suitable for matrix resins with low incoherent backgrounds for small‐angle neutron scattering studies of thermosetting resins. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

6.
The dynamic‐mechanical properties of different mixtures formed by an epoxy resin (DGEBA type) and a phenolic resin (resole type) cured by trietylenetetramine and/or p‐toluensulphonic acid at different concentrations have been studied by means of dynamic mechanical thermal analysis (DMTA). All samples were cured by pressing at 90 °C during 6 h. The mechanical studies were performed between ?100 to 300 °C at a heating rate of 2 °C/min. This study was also carried out for the epoxy‐TETA and phenolic‐p‐toluensulphonic acid systems. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1548–1555, 2005  相似文献   

7.
Thermoplastic elastomer (TPE) comprising air‐dried sheet or natural rubber (ADS or NR) and high‐density polyethylene (HDPE) was prepared by a simple blending technique. NR and HDPE were mixed with each type of phenolic compatibilizer (HRJ‐10518 or SP‐1045) or liquid natural rubber (LNR) at 180°C in an internal mixer. The mixing torque, shear stress, and shear viscosity of the blends increased with increasing amounts of NR. Positive deviation blend (PDB) for the blends containing active hydroxyl methyl phenolic resin in HRJ‐10518 or dimethyl phenolic resin in SP‐1045 was obtained. PDB was not observed for the blends without the compatibilizers or with LNR. The blends with HRJ‐10518 or SP‐1045 were compatible or partially compatible while the LNR blends were incompatible. In the phenolic compatibilized blends, NR dispersed in the HDPE matrix was found in the NR/HDPE blends of 20/80, 40/60, and 50/50 ratios. HDPE dispersed in NR matrix was obtained in the NR/HDPE blend of 80/20 ratio, and the co‐continuous phase was accomplished in the NR/HDPE blend of 60/40 ratio. The NR/HDPE blend at 60/40 ratio compatibilized with HRJ‐10518 and fabricated by a simple plastic injection molding machine exhibited higher ultimate tensile strength and elongation at break (EB). Incorporation of parafinic oil caused a decreasing tendency in tensile strength with increases in EB. The TPNRs exhibited high elastomeric nature with low‐tension set. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, a tribranched, phenylethynyl‐terminated aryl ether compound (Tri‐PE‐PAEK) was synthesized. This novel star‐shaped compound exhibits a good combination of properties, such as a low melting temperature (252 °C) and good solubility in aprotic solvents, as well as a low melt viscosity (0.1 P at 280 °C). All these advantages make it a good candidate material for modern processing techniques such as resin infusion and resin transfer molding, which are the most favorable methodologies for current economical manufacturing of polymer matrix/carbon fiber composites. Furthermore, after undergoing thermal curing to yield a network at 370 °C for 1 h, a cured sample exhibited an unexpectedly higher glass transition temperature (370 °C), storage modulus retention above the glass transition temperature, and good thermal stability. In addition, this compound can be used as a reactive diluent for phenylethynyl‐terminated imide oligomer, which has the molecular weight of 5000 g/mol (PETI‐5) to reduce its viscosity and lower the minimum temperature of the minimum viscosity. Meanwhile, the toughness of a cured blended resin can be greatly increased with the addition of just 10% Tri‐PE‐PAEK to PETI‐5. Further loading levels of Tri‐PE‐PAEK in the blending would lead to a higher storage modulus and a higher mechanical strength without compromising the thermal stability. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4844–4854, 2007  相似文献   

9.
A new benzoxazine aldehyde group containing monomer 3‐phenyl‐6‐formyl‐3, 4‐dihydro‐2H‐1, 3‐benzoxazine (Ald‐B) was synthesized via the Mannich reaction of formaldehyde, p‐hydroxybenzaldehyde, and aniline. The viscosities and curing behavior of the resins were studied. The results indicated that Ald‐B has an initial viscosity lower than 0.110 Pa s at 90°C and the maximum temperature of the exotherm was at 196°C. Dynamic mechanical analysis (DMA) of the copolymer of Ald‐B and methylenedianiline‐type bis‐benzoxazine (B‐BOZ) showed only one Tg of 251°C and high crosslink density in the matrix. The thermal stability of the copolymer was improved noticeably and the char yield at 800°C is 68.4%. The tensile strength and flexural strength of this resin cast are 72 and 137 MPa, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Polyphenylene sulfide (PPS) is a promising engineering polymer, which is used for various industrial applications. In this study, we developed a highly thermally conductive PPS composite containing boron nitride (BN) as a thermally conductive ceramic filler. (3‐Aminopropyl) triethoxysilane was doped onto the surface of hydroxyl‐functionalized BN using a simple sol–gel process. The modified BN particles were embedded in a PPS matrix via a melt mixing process using a twin extruder to form BN‐Si composites. The maximum thermal conductivity 3.09 W/m·K was exhibited by the surface‐modified BN‐Si containing 60 wt%. This value was 116% higher than the thermal conductivities of the pristine BN and PPS matrix, respectively. The surface‐treated composites also showed an improved storage modulus because of an improvement in the interfacial adhesion and interaction between the BN filler and the PPS matrix. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
A novel glass fiber reinforced composite was prepared by using silicon‐containing hybrid polymers, poly(methylhydrogen‐diethynylsilyene) (PMES) and poly(phenylethynyl‐silyloxide‐phenylborane) (APABS), as matrix resins. The curing behavior and rheological properties of the matrix resins were investigated by differential scanning calorimetry (DSC) and rotational rheometer. The dynamic viscoelastic properties, mechanical properties, and microstructures of the composites were studied by dynamic mechanical analysis (DMA), universal testing machine (UTM), and scanning electron microscopy (SEM), respectively. The results show that the composite can be well cured between 200 and 300 °C through reactive groups like Si‐H, N‐H, and C≡C units, the possible thermosetting mechanism is also proposed. The composites exhibit excellent mechanical properties with bending strength reach up to 261 and 178 MPa before and after heat‐treating, respectively. SEM analysis clearly indicates that crack in the matrix, matrix/fiber interface debonding, and fiber pull out are predominate failure mechanism for the composites which are heat‐treated in different temperatures. All these obtained results can give theoretical guiding reference for their further applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
In the present work, zinc oxide nanoparticles were treated with aminopropyl trimethoxy silane‐coupling agent and used as a new kind of reinforcement for a typical high performance bisphenol‐A‐based phthalonitrile resin. The resulted nanocomposites were characterized for their mechanical, thermal, and optical properties. Results from the tensile test indicated that the tensile strength and modulus as well as the toughness state of the matrix were all enhanced with the increasing of the nanoparticles amount. Thermogravimetric analysis showed that the starting decomposition temperatures and the residual weight at 800°C were highly improved upon adding the nanofillers. At 6 wt% nanoloading, the glass transition temperature and the storage modulus were considerably enhanced reaching about 359°C and 3.7 GPa, respectively. The optical tests revealed that the neat resin possesses excellent UV‐shielding properties, which were further enhanced by adding the nanofillers. Furthermore, the fractured surfaces of the nanocomposites analyzed by scanning electron microscope exhibited homogeneous and rougher surfaces compared with that of the pristine resin. Finally, the good dispersion of the reinforcing phase into the matrix was confirmed by a high resolution transmission electron microscope. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Precursor of polyimide, polyamic acid has been prepared sucessfully. Acid‐modified carbon nanotube (MWCNT) was grafted with soluble polyimide then was added to the polyamic acid and heated to 300 °C to form polyimide/carbon nanotube composite via imidation. Morphology, mechanical properties and electrical resistivity of the MWCNT/polyimide composites have been studied. Transmission electron microscope microphotographs show that the diameter of soluble polyimide‐grafted MWCNT was increased from 30–60 nm to 200 nm, that is a thickness of 70–85 nm of the soluble polyimide was grafted on the MWCNT surface. PI‐g‐MWCNT was well dispersed in the polymer matrix. Percolation threshold of MWCNT/polyimide composites has been investigated. PI‐g‐MWCNT/PI composites exhibit lower electrical resistivity than that of the acid‐modified MWCNT/PI composites. The surface resistivity of 5.0 phr MWCNT/polyimide composites was 2.82 × 108 Ω/cm2 (PI‐g‐MWCNT) and 2.53 × 109 Ω/cm2 (acid‐modified MWCNT). The volume resistivity of 5.0 phr MWCNT/polyimide composites was 8.77 × 106 Ω cm (PI‐g‐MWCNT) and 1.33 × 1013 Ω cm (acid‐modified MWCNT).Tensile strength and Young's modulus increased significantly with the increase of MWCNT content. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3349–3358, 2007  相似文献   

14.
A high‐performance modified cyanate resin system with low injection temperature for fabricating advanced composites via resin transfer molding (RTM) was developed, which was made of bisphenol A dicyanate ester (BADCy) and diallyl phthalate (DAP). The processing characteristics, mechanical, and thermal properties of the resin were studied, and the effect of the content of DAP on the processing and performance parameters was discussed. The results show that the processing properties of the modified cyanate system are dependent on the content of DAP. All the formulations studied in this paper have good processing characteristics; their injection temperatures are between 30 and 40°C and the pot life is about 20 hr at 50°C. The cured resins exhibited good thermal stability, excellent toughness, and good hot–wet resistance, suggesting that the toughened cyanate resin is a potential high‐performance RTM matrix for advanced composites. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Three kinds of low molecular weight unsaturated polyesters containing carbon-carbon double bonds were synthesized by the reaction of poly (ε-caprolactone) diol or D,L-lactide and glycolic acid with maleic anhydride or fumaric acid. These functionalized polymers were thermally crosslinked in the presence of radical initiator to prepare the crosslinked polymers available as a matrix resin for biomedical composites. Hydrolysis of the crosslinked polyesters was investigated in buffer solution at 37°C.  相似文献   

16.
Diglycidyl ether of bisphenol A (DGEBA)‐bridged polyorganosiloxane precursors have been prepared successfully by reacting diglycidyl ether of bisphenol A epoxy resin with 3‐aminopropyltriethoxysilane. Acid‐modified and unmodified multiwalled carbon nanotube (MWCNT) were dispersed in the diglycidyl ether of bisphenol A‐bridged polyorganosiloxane precursors and cured to prepare the carbon nanotube/diglycidyl ether of bisphenol A‐bridged polysilsesquioxane (MWCNT/DGEBA‐PSSQ) composites. The molecular motion of MWCNT/DGEBA‐PSSQ nanocomposites was studied by high‐resolution solid‐state 13C NMR. Acid‐modification can improve the affinity between MWCNT and the polymer matrix. The molecular motion of the DGEBA‐PSSQ decreased with acid‐modified MWCNT content. However, when unmodified MWCNT was used, the molecular motion of the DGEBA‐PSSQ was increased. SEM and TEM microphotographs confirm that acid‐modified MWCNT exhibits better dispersion than unmodified MWCNT in DGBEA‐PSSQ. The dynamic mechanical properties of acid‐modified MWCNT/DGBEA‐PSSQ composites are more favorable than those of unmodified MWCNT. Tg of the DGEBA‐PSSQ decreased from 174.0 °C (neat DGEBA‐PSSQ) to 159.0 °C (1 wt % unmodified MWCNT) and 156.0 °C (1 wt % acid‐modified MWCNT). The storage modulus (at 30 °C) of the DGEBA‐PSSQ increased from 1.23 × 109 Pa (neat DGEBA‐PSSQ) to 1.65 × 109 Pa (1 wt % acid‐modified MWCNT). However, when unmodified MWCNT was used, the storage modulus of the DGEBA‐PSSQ decreased to 6.88 × 108 Pa (1 wt % unmodified MWCNT). At high temperature, above 150 °C, storage modulus of nanocomposites was higher than that of neat polymer system. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 472–482, 2008  相似文献   

17.
Fullerenol polyurethane (C60‐PU) and linear polyurethane (linear‐PU) modified phenolic resins were prepared in this study. Phenolic resin/C60‐PU and phenolic resin/linear‐PU blends show good miscibility as a result of the intermolecular hydrogen bonding existing between phenolic resin and PU modifiers. DSC and thermogravimetric analysis methods were used to study the thermal properties of phenolic resin blended with different types of PUs. The intermolecular hydrogen bonding that existed between phenolic resin and C60‐PU was investigated by Fourier transform infrared spectroscopy. The morphology and mechanical properties of phenolic resin/C60‐PU and phenolic resin/linear‐PU blends were also investigated. The char yield of the modified phenolic resins decreased with increasing PU modifier content. Significant improvement in the toughness of the modified phenolic resins was observed. The improvements of impact strength were 27.4% for the phenolic resin/linear‐PU system and 54.3% for the phenolic resin/C60‐PU system, respectively, both with 3 phr linear‐PU and C60‐PU content. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2436–2443, 2001  相似文献   

18.
The study is focused on thermoset composites reinforced with carbon and glass woven fabrics. Two types of thermoset resins, for example, epoxy and vinyl ester were used as the matrix. Varying concentrations of internal mold releasing (IMR) agent was used in the resin. The composites were cured both at room temperature and at 80°C. The flexural properties were studied using 3‐point bending test method. Further theinter‐laminar shear strength (ILSS) was investigated using the short beam shear strength test based on 3‐point bending. The flexural modulus of room temperature cured epoxy resin is higher than that of high temperature cured epoxy resin and cured vinyl ester resin. The flexural modulus is lowest for 1% IMR sample in epoxy system and the modulus for 0% and 2% epoxy are not significantly different. Lowest flexural strength and modulus can be observed for the combination of reinforcement and curing conditions for samples containing 1% IMR for the epoxy systems. Carbon fiber is found to be less compatible with the vinyl ester resin system and the addition of IMR to the resin degraded the properties further. Inter‐laminar shear strength for epoxy‐based composites is not much affected by presence of IMR, but in case of vinyl ester based composites there is a decrease in ILSS on addition of IMR agent. The study explains variation in flexural properties on addition of IMR and change of curing conditions. These results can be used for ascertaining variation in mechanical properties in real use.  相似文献   

19.
In this work, dense molybdenum disulfide (MoS2) nanosheets were grown onto polydopamine (PDA) functionalized aramid fabric (AF) surface via a simple hydrothermal method to improve the wettability between AF surface and polyhexahydrotriazine (PHT) resin, thus resulting in stronger AF/resin interfacial bonding. The PDA-assisted surface modification on AF generated a high active interface allowing the nucleation and subsequent growth of MoS2. Moreover, this nanosheet-coated reinforcement fiber enabled the viscous liquid of resin precursor to spread over and form intimate contact with its surface, which eventually promoted the formation of strong interfacial bonding between AF-MoS2 and cured resin matrix. In addition, the enhanced interfacial bonding between the reinforcement and matrix generated stable mechanical interlock within the resulting AF-MoS2/PHT composites, and thus, contributed better thermal stability, higher tensile strength, and tribological properties. Compared with AF/PHT composites, the tensile strength and elongation at break of the AF-MoS2/PHT composites increased by 32.5% and 50%, and the average friction coefficient and wear rate of AF-MoS2/PHT composites decreased by 43.9% and 86.3%, respectively. Furthermore, the composites realized the non-destructive recovery of expensive AF at 25 °C. Overall, our study demonstrates a dependable strategy to construct the recyclable AF-MoS2/PHT composites, which exhibit valuable applications in tribology.  相似文献   

20.
Low molecular weight epoxy resin based on bis (4‐hydroxy phenyl) 1,1 cyclohexane was prepared and modified with various types of the prepared phenolic resins. Phenol–, cresol–, resorcinol–and salicylic acid–formaldehyde resins were used. The optimum conditions of formulation and curing process were studied to obtain modified wood adhesives characterized by high tensile shear strength values. This study indicated that the more suitable conditions are 1:2 weight ratio of phenol–or cresol–formaldehyde to epoxy resin in the presence of phthalic anhydride (20 wt%) of the resin content as a curing agent at 150°C for 80 min. Resorcinol–or salicylic acid–formaldehyde/epoxy resins formulated at 1:2 weight ratio were cured in the presence of paraformaldehyde (20 wt%) at 150°C for 60 min. The effect of the structure of phenolic resins on the tensile shear strength values of formulated resin samples, when mixed with the epoxy resins and cured under the previously mentioned optimum conditions for different times, was investigated. Metallic and glass coatings from the previous resins were also prepared and evaluated as varnishes or paints. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号