首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
苗期玉米、大豆在土壤-植物系统N2O排放中的贡献   总被引:6,自引:0,他引:6  
为区分植物在土壤-植物系统N2O排放中的贡献,用封闭式箱法对在温室内砂培和土培的玉米、大豆幼苗及砂、土、砂-植物系统、土壤-植物系统的N2O排放进行了测定,同时对植物N2O排放与植物叶片中的硝酸还原酶(NR)活性及NO-3-N、NO-2-N含量的关系进行了分析.结果表明:在53d的观测期内,玉米、大豆幼苗本身均可排放N2O,且在土壤(砂)-植物系统的N2O排放中占有很大份额(79.18%~100%);植物N2O的排放与植物叶片的硝酸还原酶活性和NO-3-N、NO-2-N的含量显著正相关(R2≥0.97,n=6).  相似文献   

2.
稻田土壤长期的淹水厌氧环境有利于反硝化作用的进行,是导致N2O大量排放的重要原因之一.目前,关于稻田土壤N2O排放特征的相关研究已有不少,然而关于稻田土壤N2O的消纳能力及相关功能微生物的应答机制尚不明确.本研究以淹水水稻土原状土柱(0~5 cm)为研究对象,在土柱底部输入外源N2O气体,系统监测所添加外源N2O通过土柱的浓度及关键土壤因子的动态变化特征,以及分析nosZ-I型功能种群组成的演替规律,以期揭示淹水水稻土N2O的消纳能力及nosZ-I型功能种群的应答机制.结果表明,外源N2O输入后约97.39%扩散进入土柱,逸散出土表的N2O占0.72%~7.75%,达到排放高峰后被土壤继续消耗,培养192 h后外源N2O处理比对照多消耗67.10% N2O,N2O消耗速率提高144.2%.同时,NH4+-N、NO3--N和DOC分别多消耗了19.65%、16.29%和8.41%.N2O输入192 h后nosZ-I的群落多样性没有显著差异,但是其种群组成发生显著改变:优势菌株OTU5004、OTU5065、OTU960和OTU1282(Proteobacteria)相对丰度显著提高,其中OTU5004菌株相对丰度比初始样和CK升高7.30%和4.63%,非优势菌株OTU5265(Azoarcus sp.)比初始样和CK升高0.33%和0.15%.上述结果表明,0~5 cm深度渍水水稻土壤具有很强的N2O消耗能力,外源N2O添加使N2O消耗速率明显加快,提高了淹水水稻土壤对N2O的消纳潜力,促进碳氮转化和nosZ-I群落组成变化,这将为降低大气N2O排放提供新的参考.  相似文献   

3.
基于华北集约化农田麦玉轮作系统,对比研究了添加生物炭和秸秆还田对整个轮作周期土壤N2O排放的影响,为农田土壤N2O减排和秸秆的资源化利用提供理论依据.试验共设4个处理:①对照(CK);②生物炭9.0 t·(hm2·a)-1(C);③秸秆全量还田(SR);④在全量秸秆还田的基础上添加生物炭9.0 t·(hm2·a)-1(C+SR).结果表明,小麦季,C处理土壤N2O排放略有降低但差异不显著,SR和C+SR处理促进了土壤N2O的排放(47.4%和71.8%);玉米季,C处理降低了土壤N2O的排放(29.8%),SR和C+SR处理促进了土壤N2O的排放(13.4%和35.8%);小麦季,土壤含水量、NH4+-N和MBN含量是影响土壤N2O排放的主要环境因子;玉米季,NO3--N、NH4+-N和MBC含量是影响土壤N2O排放的主要环境因子.因此,生物炭对农田N2O具有巨大的减排潜力,而秸秆直接还田不利于减少N2O排放,并且在秸秆还田基础上添加生物炭并不能改善这种影响,今后应加强对秸秆腐熟还田技术的研究.  相似文献   

4.
异养硝化-好氧反硝化细菌Acinetobacter junii WZ17脱氮效果良好,为确定其脱氮特性及动力学过程,利用“样条插值法”研究了菌株生长阶段,并采用Logistic模型和修正的Gompertz模型对菌株生长及氮素去除过程进行拟合,结合反硝化过程中间产物,分析菌株脱氮途径.结果显示,菌株WZ17以NH4+-N、NO3--N和NO2--N唯一氮源时,生长适应期分别为2.89、3.13和3.13 h,最大去除速率分别为8.47、5.76和5.18 mg·L-1·h-1,生长和底物去除过程分别符合Logistic模型(R2>0.9)和修正的Gompertz模型(R2>0.9).硝化过程中,NO3--N和NO2--N的积累量仅为0.13和0.14 mg·L-1,反硝化过程中,NO2--N的积累量为1.55 mg·L-1.“样条插值法”的运用可以准确地划分菌株WZ17的生长阶段,菌株WZ17对NH4+-N、NO3--N和NO2--N均具有较好的去除效果,反硝化途径为NO3--N→NO2--N→NxOy.  相似文献   

5.
Nitrous oxide emissions from black soils with different pH   总被引:1,自引:0,他引:1  
N2O fluxes as a function of incubation time from soil with different available N contents and pH were determined. Cumulative carbon dioxide (CO2) emissions were measured to indicate soil respiration. A 144-hr incubation experiment was conducted in a slightly acidic agricultural soil (pHH2O 5.33) after the pH was adjusted to four different values (3.65, 5.00, 6.90 and 8.55). The experiments consisted of a control without added N, and with NH4+-N and NO3--N fertilization. The results showed that soil pH contributed significantly to N2O flux from the soils. There were higher N2O emissions in the period 0-12 hr in the four pH treatments, especially those enhanced with N-fertilization. The cumulative N2O-N emission reached a maximum at pH 8.55 and was stimulated by NO3--N fertilization (70.4 μg/kg). The minimum emissions appeared at pH 3.65 and were not stimulated by NO3--N or NH4+-N fertilization. Soil respiration increased significantly due to N-fertilization. Soil respiration increased positively with soil pH (R2 = 0.98, P < 0.01). The lowest CO2-C emission (30.2 mg/kg) was presented in pH 3.65 soils without N-fertilization. The highest CO2-C emissions appeared in the pH 8.55 soils for NH4+-N fertilization (199 mg/kg). These findings suggested that N2O emissions and soil respiration were significantly influenced by low pH, which strongly inhibits soil microbial nitrification and denitrification activities. The content of NO3--N in soil significantly and positively affected the N2O emissions through denitrification.  相似文献   

6.
为探明秸秆还田配施生物炭对夏玉米产量和土壤氧化亚氮(N2O)排放的影响,基于2019~2020年关中平原田间定位试验,利用静态暗箱-气相色谱法监测了土壤N2O排放通量,综合分析夏玉米产量、土壤N2O排放和土壤活性氮组分,明确了秸秆还田配施生物炭在培肥土壤、增产减排方面的效应.以秸秆不还田(S0)为对照,设置秸秆还田(S)和秸秆还田配施生物炭(SB)共3个处理.结果表明,各处理N2O排放峰值出现在秸秆还田后10 d,秸秆还田30 d后土壤N2O排放通量处于较低水平,土壤N2O排放通量与铵态氮(NH4+-N)、无机氮、微生物量氮(MBN)和可溶性有机氮(DON)含量呈显著的正相关关系(P<0.05).S较S0显著增加夏玉米产量、N2O累积排放量、单位产量N2O累积排放量和土壤总氮(TN)含量,分别为7.4%~13%、65.8%~132.2%、54.6%~103%和27.8%~33%.虽然SB较S提高夏玉米产量(2.5%~3.3%)的趋势不显著(P>0.05),但是SB较S显著降低N2O累积排放量和单位产量N2O累积排放量,分别为24.0%~27.3%和26.4%~29.2%.在土壤N2O排放通量达到峰值时,SB较S显著降低土壤N2O排放通量45.1%~69.6%,生物炭能够缓解秸秆还田所诱发的土壤N2O排放,具有削峰的作用.SB较S显著增加土壤总氮9.1%~12.2%.综合作物产量、N2O排放和土壤总氮,对夏玉米生产而言,秸秆还田配施生物炭不仅培肥地力,提高夏玉米产量,而且减少单位产量N2O累积排放量,是可供推广的兼顾作物产量和环境友好的适宜管理措施.  相似文献   

7.
热区稻菜轮作系统瓜菜季施肥后大量硝态氮积累,导致后续的水稻季淹水后硝态氮的淋失以及大量N2O排放,使氮素损失以及温室效应加剧.如何提高硝态氮利用率,减少N2O排放成为了亟待解决的问题.试验共设置6个处理:添加200 mg·kg-1 (以N计,下同)KNO3(CK);添加200 mg·kg-1 KNO3+2%生物炭(B);添加200 mg·kg-1 KNO3和1%花生秸秆(P);添加200 mg·kg-1 KNO3+2%生物炭+1%花生秸秆(P+B);添加200 mg·kg-1 KNO3+1%水稻秸秆(R);添加200 mg·kg-1 KNO3+2%生物炭+1%水稻秸秆(R+B),进行114 d的25℃恒温淹水培养,来探究有机物料添加对土壤淹水后温室气体排放和氮素利用的影响.结果表明,与CK相比,添加秸秆或秸秆和生物炭配施显著增加了土壤pH(P<0.05);B和P处理分别显著增加了41.6%和28.5%的N2O累计排放(P<0.05),P+B、R和R+B处理分别显著降低了14.1%、24.7%和36.7%的N2O累计排放(P<0.05);添加秸秆增加了净温室气体增温潜势(NGWP),增施椰壳生物炭能够显著减缓秸秆对NGWP的影响(P<0.05),秸秆和生物炭配合施用降低了NGWP,其中P+B显著降低NGWP(P<0.05),R+B不显著;添加秸秆或生物炭显著增加了土壤微生物量碳(MBC)(P<0.05),P+B最高,为502.26 mg·kg-1;秸秆和生物炭配施增加了土壤微生物量氮(MBN),P+B最高.N2O排放通量与pH呈极显著负相关(P<0.01),与NH4+-N和NO3--N呈极显著正相关(P<0.01);N2O累计排放量与MBN呈极显著负相关(P<0.01);NO3--N与MBN呈显著负相关(P<0.05),说明硝态氮的减少可能被微生物固持,微生物对硝态氮固持的增加也减少了N2O排放.综上所述,花生秸秆和椰壳生物炭配合施用能够显著抑制N2O排放,增加土壤MBC和MBN,是一种海南瓜菜季后充分利用氮肥,减少氮素损失,减缓N2O排放的一种合理措施.  相似文献   

8.
田琳琳  王正  胡磊  任光前  朱波 《环境科学》2019,40(4):1939-1949
随着农业非点源氮(N)污染的加剧,农田周边溪流成为重要的活性N汇和潜在的氧化亚氮(N2O)排放源.为查明长江上游农业源溪流中溶存N2O浓度的全年动态变化特征,于2014年12月~2015年10月开展紫色土丘陵区典型农田源头溪流N2O浓度的连续采样观测,采用水-气顶空平衡-气相色谱法测定顶空气体中N2O浓度,根据相关参数计算出本研究水体中的溶存N2O浓度,并同步测定溪流水体物理化学指标,分析水中溶存N2O浓度的主要影响因素.结果表明,长江上游紫色土丘陵区的典型农业源溪流的硝态氮(NO3--N)是最主要的活性N赋存形态(年均1.45 mg·L-1),溪流水体溶存N2O质量浓度(以N计)全年平均为0.57 μg·L-1(范围0.26~1.28 μg·L-1),冬、春、夏和秋季的均值分别为0.63、0.45、0.53和0.64 μg·L-1,但季节间无显著差异.溪流水体溶存N2O浓度全年都处于过度饱和状态(饱和度年平均为203.9%,范围109.7%~546.5%),可见,农业源溪流全年均为潜在的N2O释放源.溪流溶存N2O浓度的变化主要由水体NO3--N浓度决定,N2O的主要产生机制为反硝化作用;溪流季节平均N2O饱和度在夏、秋季显著高于冬、春季,水中溶存N2O饱和度的变化主要受水温和NO3--N浓度的共同影响.研究还发现农业源溪流中溶存N2O浓度在4~10月(湿润季节)间波动明显,较强降雨可促使其水中NO3--N浓度在雨后短期内升高,进而促进水体反硝化作用,导致雨后溪流中溶存N2O浓度的增加.  相似文献   

9.
河套灌区春小麦-萝卜复种模式下土壤NO3--N动态   总被引:2,自引:1,他引:1  
冯兆忠  王效科  冯宗炜 《环境科学》2006,27(6):1223-1228
研究了河套灌区春小麦-萝卜复种模式下,土壤、土壤溶液和地下水NO3--N浓度的动态变化.结果表明:随着试验时间的延长,土壤表层NO3--N含量降低,深层(100~150cm)增加;土壤溶液中、下层NO3--N浓度(70、120cm)显著高于上层(30cm),尤其是在萝卜生长季.当前的灌溉条件下,不同年度、不同生长季土壤NO3--N淋失量的多少与土壤水分的下渗量密切相关,且输入的氮素中有30%以上以NO3--N的形式淋失掉.施肥区地下水NO3--N浓度显著高于未施肥区,且65.5%的水样超过WHO规定的上限(11.3mg/L).总之,经过连续2a的春小麦与萝卜复种可使表层土壤NO3--N含量明显降低,但由于中、下层土壤剖面中残留大量的NO3--N,因此在当前灌溉措施下,短期内NO3--N淋失是不可避免的.  相似文献   

10.
合理施氮是获得较高目标产量和降低因氮环境污染的重要策略.通过盆栽试验研究等氮量下不同分施次数对玉米产量及土壤N2O排放的影响,并探讨氮转化功能基因丰度与N2O排放的关系.本试验设空白(CK,不施尿素)、一次性施氮(S1,将0.5g·kg-1尿素一次性施入土壤+硝化抑制剂)、二次分施(S2,将0.5g·kg-1尿素分40%和60%两次施入土壤)和三次分施(S3,将0.5g·kg-1尿素分20%、40%和40% 3次施入土壤).结果表明:①施氮促进土壤酸化,氮分施次数造成土壤酸化程度的显著差异,氮分施次数越多,土壤酸化越强.施氮显著提高鲜食玉米果穗产量及茎秆生物量,但氮肥分施次数对土壤pH影响的差异可能会导致植物对氮的吸收利用程度也存在着差异.S3处理显著降低土壤pH的同时,也降低了植物氮吸收累积量和氮素利用效率,也造成了高的N2O累积排放量.与S3处理相比,S1和S2处理分别增产了40.21%和42.55%,其N2O累积排放量也分别显著降低了79.4%和20.9%.② N2O排放与AOB和nirK基因丰度呈显著正相关关系,AOB和nirK是N2O排放的主要贡献者.S1处理显著降低了AOB和nirK基因丰度,降低N2O排放,S2和S3处理施肥后显著增加了nirKnirS基因丰度,降低了nosZ基因丰度,促进了N2O的排放.氮分施次数影响氮转化过程的功能基因,从而影响N2O排放.由此可见,尿素配合DCD一次性施入不仅能保证玉米产量,提高氮素利用效率,还能降低温室气体排放,可作为海南地区鲜食玉米种植过程推荐的施肥模式.  相似文献   

11.
昼夜增温对大豆田土壤N2O排放的影响   总被引:4,自引:1,他引:3  
通过田间试验,用静态箱-气相色谱法测定N2O排放通量,研究昼夜增温对大豆田土壤N2O排放的影响.结果表明,增温没有改变大豆田土壤N2O排放通量的季节性变化规律.整个生长季,与对照相比,增温土壤N2O平均排放通量增加了17.31%(P=0.019),累积排放量显著增加了20.27%(P=0.005).对照与增温处理土壤N2O排放通量与土壤温湿度均呈显著性相关关系,对照与增温土壤的N2O排放温度敏感系数分别为3.75和4.10.整个生育期,增温显著增加了植株地上和总生物量、叶片硝酸还原酶活性和全氮含量,显著降低了叶片NO3--N含量;显著增加了土壤NO3--N含量,但对土壤有机碳及全氮含量没有显著影响.本研究表明,昼夜增温显著增加了大豆田土壤N2O的排放.  相似文献   

12.
为了解UV-B增强条件下农田N2O响应规律,采用室外盆栽实验,研究了地表UV-B辐射增强20%对土壤-冬小麦系统N2O排放的影响及其影响机理.结果表明,在小麦返青期,UV-B辐射增强处理对该系统N2O的排放影响不显著;在小麦的拔节期,UV-B辐射增强处理显著降低了土壤-小麦系统N2O的排放,并减少了该系统的呼吸速率.UV-B辐射增强对N2O的影响机理主要表现在对小麦植株N代谢过程的影响,如显著增加  相似文献   

13.
华北平原是我国重要的粮食生产基地,其农业生产对N_2O和CH_4也具有重要影响.本研究设置包括3类不同农田管理措施的田间试验,即免耕(No-tillage,N)/旋耕(Rotary,T)、秸秆清茬(Cleaning,S0)/还田(Straw,S1)以及不同氮肥水平(常规氮肥(F2),优化氮肥(F1)和空白处理(F0)),分析对产量、N_2O和CH_4排放的影响以及与土壤性状的关系.结果表明,优化氮肥能保持和当地常规氮肥水平相同的粮食产量,同时可以有效降低温室气体CO2-eq(45.4%).秸秆还田可以显著降低N_2O的排放,其中在夏玉米季效果尤为明显.施用氮肥能够抑制土壤对CH_4的吸收.夏玉米季是N_2O排放的主要时期(N_2O累积排放占全年的59%~78%).土壤NO-3含量、WFPS和土壤温度都对N_2O有显著影响.主效应和交互作用分析证明,氮肥水平对两季作物产量、秸秆还田对冬小麦的产量有显著影响;耕作方式与氮肥水平、秸秆还田分别对两季作物产量和CH_4有极显著的交互作用,秸秆处理和氮肥水平对CH_4排放和冬小麦产量有显著的交互作用;三因素的交互作用体现在对冬小麦产量和两季作物的总产量有显著影响.在华北平原当前氮肥水平上降低30%仍能维持和当地常规农业管理措施相同的作物产量,降低N_2O和CH_4排放45%以上,秸秆还田体现出降低N_2O排放以及长期提高土壤有机碳水平的效益.  相似文献   

14.
亚硝酸盐对外碳源反硝化过程N2O还原的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
本试验通过批次试验考察了亚硝酸盐对外碳源反硝化过程N2O还原的影响.结果表明NO2--N初始浓度为5.92~35.23mg/L时,随着NO2--N浓度的增加,反硝化过程中N2O的积累量逐渐增加;当NO2--N浓度为35.23mg/L时,NO2--N还原量的46.26%被转化为N2O.通过对比试验得出,N2O还原酶与亚硝酸盐还原酶对电子的竞争和游离亚硝酸(FNA)对N2O还原酶的抑制会导致N2O比还原速率下降,造成反硝化过程N2O积累.基于上述试验结果提出,污水处理厂可通过调控运行条件控制NO2--N浓度,降低反硝化过程的N2O的产生与释放;也可以通过短程硝化提高NO2--N浓度,促进反硝化过程N2O的积累,再通过N2O氧化甲烷减少N2O排放,同时提高产能37%.  相似文献   

15.
氮肥管理措施对黑土玉米田温室气体排放的影响   总被引:6,自引:0,他引:6  
采用静态箱-气相色谱法研究了不同氮肥管理措施(农民常规施肥、减氮20%、添加硝化抑制剂、施用控释肥)对黑土玉米田温室气体排放的影响.结果表明:黑土玉米田施肥(基肥和追肥)后1~3d出现N2O排放峰,施肥后16d内N2O排放量占生育期总排放量的28.8%~41.9%.减施氮肥20%显著降低土壤N2O排放,生育期内的N2O累积排放量减少了17.6%~46.1%,综合温室效应降低30.7%~67.8%,温室气体排放强度降低29.1%~67.0%.等氮量投入时,添加吡啶抑制剂土壤N2O排放量、综合温室效应和温室气体排放强度最低.玉米拔节~乳熟期出现了较强的土壤CO2排放,黑土玉米田是大气中CH4的一个较弱的“汇”,施氮和添加硝化抑制剂对黑土玉米田CO2排放和CH4吸收没有显著影响.添加硝化抑制剂和施用控释肥不影响玉米产量.在本试验条件下,减氮20%并添加吡啶抑制剂在保证玉米产量的同时, 减排增收效果优于其他施肥措施,适宜在黑土区玉米种植中推广使用.  相似文献   

16.
有机肥与无机肥配施对潮土N2O排放的影响   总被引:3,自引:1,他引:3  
华北平原是我国重要的粮食主产区,由于土壤有机质含量低,增加氮肥用量并不能导致玉米产量持续增加.有机肥和无机肥配施被广泛认为是同时实现粮食增产和提高土壤有机质的双赢措施,但是有机肥和无机肥配施对华北平原农田N_2O排放的影响尚不明确.本研究在华北平原潮土区,通过测定不同种类有机肥与无机肥配施后农田N_2O排放通量和作物产量,旨在揭示不同种类有机肥及其用量对潮土N_2O排放和作物产量的影响效应.田间试验共设置8个处理,分别为不施肥(CK)、化肥氮(NPK)、 40%牛粪氮+60%化肥氮(CM)、 40%鸡粪氮+60%化肥氮(FC)、 40%猪粪氮+60%化肥氮(FP)、 20%牛粪氮+80%化肥氮(1/2CM)、 20%鸡粪氮+80%化肥氮(1/2FC)和20%猪粪氮+80%化肥氮(1/2FP).整个玉米季N_2O排放通量均与土壤WFPS显著正相关(P0.05).除NPK处理外,玉米季N_2O排放量与土壤可溶性有机碳(DOC)平均含量存在显著的线性关系.玉米季CK处理N_2O排放量为0.50 kg·hm~(-2),NPK处理增加到2.28 kg·hm~(-2).相同用量不同种类有机肥处理,N_2O排放未出现显著差异. 40%有机肥氮用量处理下N_2O排放量与NPK处理无显著差异,而用量减少至20%后, 1/2CM、 1/2FC和1/2FP处理N_2O排放量分别较CM、 FC和FP减少了33.6%、 43.7%和12.1%,其主要原因为易分解有机碳输入减少,土壤DOC含量降低,但玉米产量未出现显著差异.因此,从减少温室效应的角度,玉米季80%化肥氮配施20%有机肥氮为本地区农田施肥的较佳选择.  相似文献   

17.
为研究生物炭添加(B0:0 t·hm-2、 B20:20 t·hm-2、 B40:40 t·hm-2)和地膜覆盖(FM:覆膜、 NM:不覆膜)对菜地N2O排放的影响,以西南大学农场内辣椒-萝卜轮作菜地为研究对象,采用静态暗箱/气相色谱法进行为期1 a的田间原位观测.共设置6个处理,分别为NMB0(CK)和FMB0、 NMB20和FMB20、 NMB40和FMB40.结果表明,FM显著提高辣椒季土壤中铵态氮和硝态氮含量(P<0.05),而对萝卜季土壤环境因子均无显著影响.与NM相比,辣椒季FM分别对B0、 B20和B40处理下的N2O排放提高了52.87%、 52.97%和52.49%(P<0.05),但萝卜季FM对N2O排放无显著影响.生物炭对辣椒和萝卜季土壤环境因子均无显著影响.萝卜季生物炭添加减少了28.76%~67.88%的N2O排放(P<0.01),辣椒季生物炭添加对N2O排放无显著影响...  相似文献   

18.
华北平原玉米-小麦轮作农田N2O交换通量的研究   总被引:8,自引:2,他引:6  
以华北地区冬小麦-夏玉米轮作农田为研究对象,运用静态箱法对正常施肥及正常施肥结合秸秆还田农田N2O交换通量进行了连续1 a对比研究.正常施肥及正常施肥结合秸秆还田样地N2O全年的累积排放量分别为7.61 kg.hm-2和12.6kg.hm-2,其中秸秆还田引起N2O排放明显增加主要发生在玉米生长季节.两种处理样地在玉米季N2O的排放量占全年累积排放的57%~86%,表明华北玉米-小麦轮作体系中N2O排放主要集中在玉米季.各次施肥后10 d内N2O的累积排放量约占全年总排放量的71%~88%,显然现有化肥极大促进了华北农田N2O排放.  相似文献   

19.
Phytotoxicity of cadmium on growing Arachis hypogaea L. seedlings was studied. Seeds were exposed to 25, 50, and 100 μmol/L CdCl2 concentrations, for a period of 10, 15, 20 and 25 d. The extent of damage to chlorophyll, protein, proline, nitrate and nitrite reductase, antioxidant enzyme activity in leaves and roots were evaluated after 10 d of cadmium stress. The higher concentration of cadmium (100 μmol/L) resulted (leaves and roots) total chlorophyll 91.01%, protein 79.51%, 83.61%, nitrate reductase 79.39%, 80.72% and nitrite reductase 77.07%, 75.88% activity decreased with increase in cadmium concentrations and exposure periods. Cadmium caused significant changes in the activity of antioxidative enzymes. Contrastingly Cd treated plant tissues showed an increase in proline 159.87%, 239.6%, gluthion reductase (GR) 337.72%, 306.14%, superoxide disumutase (SOD) 688.56%, 381.72%, ascorbate peroxidase (APX) 226.47%, 252.14%, peroxidase (POD) 72.19%, 60.29% and catalase (CAT) 228.96%, 214.74% as compared to control. Cadmium stress caused a significant increase in the rate of SOD activity in leaves and roots of plant species. Results show the crop A. hypogaea is highly sensitive even at very low cadmium concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号