首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We present V and I photometry of two open clusters in the LMC down to V ∼26. The clusters were imaged with the Wide Field and Planetary Camera 2 (WFPC2) on board the Hubble Space Telescope ( HST ), as part of the Medium Deep Survey Key Project. Both are low-luminosity ( MV ∼−3.5), low-mass ( M ∼103 M⊙) systems. The chance discovery of these two clusters in two parallel WFPC2 fields suggests a significant incompleteness in the LMC cluster census near the bar. One of the clusters is roughly elliptical and compact, with a steep light profile, a central surface brightness μ V (0)∼20.2 mag arcsec−2, a half-light radius r hl∼0.9 pc (total visual major diameter D ∼3 pc) and an estimated mass M ∼1500 M⊙. From the colour–magnitude diagram and isochrone fits we estimate its age as τ∼(2–5)×108 yr. Its mass function has a fitted slope of Γ=Δlogφ( M )/Δlog M =−1.8±0.7 in the range probed (0.9≲ M /M⊙≲4.5). The other cluster is more irregular and sparse, having shallower density and surface brightness profiles. We obtain Γ=−1.2±0.4, and estimate its mass as M ∼400 M⊙. A derived upper limit for its age is τ≲5×108 yr. Both clusters have mass functions with slopes similar to that of R136, a massive LMC cluster, for which HST results indicate Γ∼−1.2. They also seem to be relaxed in their cores and well contained in their tidal radii.  相似文献   

3.
We present deep photometry ( V ≲26) in V and I bands obtained with the Wide Field and Planetary Camera 2 on board the Hubble Space Telescope for 7 fields ∼5° away from the Large Magellanic Cloud centre. The fields contain, typically, 2000 stars each. Isochrones were fitted to the colour–magnitude diagrams in order to identify different star populations in these fields. An old population ( τ >10 Gyr) has been found in all fields. Some events of enhanced star formation, with ages between 2 and 4 Gyr, were identified in the fields localized in the north to north-west regions. Luminosity functions of low-mass stars were also obtained for all fields. Kolmogorov Smirnov test results suggest differences smaller than 30 per cent in the mixture of stellar populations contributing to the fields. Finally, density profiles were derived for old and intermediate-age stars. The former shows a slightly steeper decline than the latter.  相似文献   

4.
The average age difference between pairs of star clusters in the Large Magellanic Cloud (LMC) increases with their separation as the ∼ 0.35 power. This suggests that star formation is hierarchical in space and in time. Small regions form stars quickly and large regions, which often contain the small regions, form stars over a longer period. A similar result found previously for Cepheid variables is statistically less certain than the cluster result.  相似文献   

5.
We show how the second sequence seen lying above the main sequence in cluster colour–magnitude diagrams results from binaries with a large range of mass ratios and not just from those with equal masses. We conclude that the presence of a densely populated second sequence, with only sparse filling in between it and the single star main sequence, does not necessarily imply that binary mass ratios are close to unity.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Recent observational studies of intermediate-age star clusters (SCs) in the Large Magellanic Cloud (LMC) have reported that a significant number of these objects show double main-sequence turn-offs (DMSTOs) in their colour-magnitude diagrams (CMDs). One plausible explanation for the origin of these DMSTOs is that the SCs are composed of two different stellar populations with age differences of ∼300 Myr. Based on analytical methods and numerical simulations, we explore a new scenario in which SCs interact and merge with star-forming giant molecular clouds (GMCs) to form new composite SCs with two distinct component populations. In this new scenario, the possible age differences between the two different stellar populations responsible for the DMSTOs are due largely to secondary star formation within GMCs interacting and merging with already-existing SCs in the LMC disc. The total gas masses being converted into new stars (i.e. the second generation of stars) during GMC-SC interaction and merging can be comparable to or larger than the masses of the original SCs (i.e. the first generation of stars) in this scenario. Our simulations show that the spatial distributions of new stars in composite SCs formed from GMC-SC merging are more compact than those of stars initially in the SCs. We discuss both advantages and disadvantages of the new scenario in explaining fundamental properties of SCs with DMSTOs in the LMC and in the Small Magellanic Cloud (SMC). We also discuss the merits of various alternative scenarios for the origin of the DMSTOs.  相似文献   

20.
We present colour–magnitude diagrams for two rich (≈104 M) Large Magellanic Cloud star clusters with ages ≈107 yr, constructed from optical and near-infrared data obtained with the Hubble Space Telescope . These data are part of an HST project to study LMC clusters with a range of ages. In this paper we investigate the massive star content of the young clusters, and determine the cluster ages and metallicities, paying particular attention to Be-star and blue-straggler populations and evidence of age spreads. We compare our data with detailed stellar-population simulations to investigate the turn-off structure of ≈25 Myr stellar systems, highlighting the complexity of the blue-straggler phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号