首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
针对微网系统并网/离网运行过程中对模式平滑切换,抗外界干扰能力和系统动态响应具有较高要求的情况下,提出了双模式逆变器在电网基波频率同步旋转坐标系下的双环控制策略,建立了微网光伏逆变器并网/离网模式数学模型.系统并网时采用基于PI调节器的电压矢量跟踪电流控制策略,离网运行时采用基于SVPWM的电容电压外环电感电流内环控制...  相似文献   

2.
基于储能装置的控制器添加了电压、电流补偿控制环节,提出一种微电网无缝切换控制策略以减少微电网在模式切换时的冲击。建立了基于风、光、储的微电网模型,储能装置在并网运行时采用P/Q控制,并在内环添加了微分反馈补偿控制;离网运行时采用V/F控制,在外环添加了微分前馈补偿控制,并与内环微分反馈控制共同工作,从而消除了切换过程中的冲击现象。利用PSCAD/EMTDC搭建微电网模型,仿真结果验证了所提控制策略的有效性,实现了微电网在并/离网运行模式的无缝切换。  相似文献   

3.
陈根  程启明  程尹曼  李明  王鹤霖  邓亮 《华东电力》2014,42(6):1168-1174
研究光储式电动汽车充电站微网运行模式,对电网的经济稳定运行和低碳的实现具有重要的意义。提出了一种光储式电动汽车充电站微网结构,详细介绍了其结构及功能实现。其中,双向DC/DC采用限幅电流闭环控制;双向AC/DC借鉴微网控制策略,当处于并网整流及PQ逆变控制模式下采用电压外环、电感电流内环控制,当处于离网V/f及Droop逆变控制模式下采用电压外环、电容电流内环控制。文中还搭建了相应的Simulink仿真平台,仿真结果表明,系统在并网模式下能够快速稳定地实现V2G技术,且孤岛模式下亦能稳定运行和可靠供电。对于新型电动汽车充电站的设计和工程实现具有切实的参考价值。  相似文献   

4.
为了避免微电网并网与孤岛运行模式控制策略的切换,实现微电网并网模式和孤岛模式之间的平滑切换,研究在低压微电网下垂特性的基础上,提出了一种采用外环功率控制和内环电压电流双环控制的三环控制策略,实现并网时基于下垂控制的间接恒功率控制,孤岛时分布式电源自动调节功率输出,并设计了微电网同步并网控制器,有效地减少了微电网过渡过程产生的冲击。仿真结果表明,所提微电网逆变器控制策略运行稳定,运行模式之间能平滑切换。  相似文献   

5.
在低压微网中,以永磁风力发电并网系统的逆变器为研究对象,主要研究了风力发电系统在并网和离网两种模式下系统逆变器的控制策略。对于系统处于并网和离网情况下,逆变器的电流内环采用瞬时反馈电容电流控制,有效解决了因LCL滤波器引起的系统不稳定控制问题。针对两种不同模式下,本文对并网模式下系统的逆变器控制采用瞬时功率外环、瞬时电容电流PIR内环控制;离网模式下采用负载电压为外环、瞬时电容电流PIR控制为内环的双闭环控制。经过仿真分析,外环瞬时有功无功控制实现了风力发电并网系统逆变器给定功率控制,在系统输出功率发生变化的情况下,电流具有快速精确的动态跟踪性能,实现了系统功率解耦控制,保证了系统输出高质量电能,有效验证了本文控制策略的可行性。  相似文献   

6.
单相微电网逆变器的并网/离网工作模式研究   总被引:1,自引:0,他引:1  
单相微电网系统需要逆变器具有并网/离网双工作模式,针对工频变压器隔离型单级式单相逆变器研究了一种并网/离网双工作模式的控制策略。离网模式下采用基于准比例谐振(PR)控制器的电压外环和电感电流比例内环的双闭环控制策略,可有效控制输出电压。并网模式下利用锁相环(PLL)技术跟踪电网电压相位,采用准PR控制器实现并网电流控制。在建立单相逆变器闭环系统数学模型基础上,对逆变器在并网、离网模式及模式间平滑切换过程中的系统性能进行了分析,实验结果表明了理论分析和控制策略的正确性。  相似文献   

7.
在微型燃气轮机和永磁同步发电机基础上建立了微型燃气轮机系统模型,在整流器侧采用电压外环电流内环双环控制方式对整流部分进行控制,在逆变器侧提出了P-Q控制策略和V-f控制策略,分别运用于微电网并网运行和孤网运行的两种模式,设计出了相应的控制系统.利用电力系统分析软件PSCAD/EMTDC分别对两种运行模式进行仿真,仿真结果表明:在并网运行时,微型燃气轮机并网逆变系统能够快速跟踪给定参考功率,实现了系统的并网P-Q解耦控制;在孤网运行时,微型燃气轮机能够快速响应负荷功率的变化,维持负荷电压稳定,说明了该模型具有较好的负荷跟随能力,能够承受负荷变化时的电压冲击.  相似文献   

8.
在低压微网中,以永磁风力发电并网系统的逆变器为研究对象,主要研究了风力发电系统在并网和离网两种模式下系统逆变器的控制策略。由于风能自身的特点,风力发电系统可能处于并网和脱网两种模式下运行,而系统中逆变器的控制性能成为系统平滑稳定切换的核心之一。该文提出了一种新的并网逆变器在不同的运行模式下的控制策略。当系统并网运行时,逆变器电流内环采用瞬时电容电流改进的谐振控制,解决了因LCL三阶滤波器引起的系统震荡问题,且输出电流具有良好的动态跟踪性能;电压外环采用瞬时平均功率跟踪控制,实现了逆变器按给定功率稳定输出,保证了发电系统向电网馈入高质量的电能。当系统脱网运行时,电压外环采用基于无功下垂系数调节的电压PI控制,内环控制保持不变,当负载突然改变时,保证了发电系统具有较快动态响应性能,且向负载提供稳定功率。经过仿真分析,有效验证了所提控制策略的准确性和可靠性。  相似文献   

9.
采用带LCL滤波器的背靠背双PWM变流器作为飞轮电机与电网进行能量交换的接口,提出一种飞轮储能系统并网控制方法。该方法由电网侧变流器控制和电机侧变流器控制两部分组成,并经过充电、预并网和并网运行三个阶段。在充电和预并网阶段,电网侧变流器采用不控整流方式,电机侧变流器先后采用速度外环和电压外环控制方式;在并网运行阶段,电网侧变流器控制采用基于电网侧电流外环、变流器侧电流内环的直接功率控制策略,控制并网有功功率的大小及流向;电机侧变流器控制采用直流母线电压外环、电流内环的双闭环控制策略,维持直流母线电压恒定。采用零极点对消降阶法及对称优化函数等效法分别设计电机侧内外环控制器参数。进行了飞轮储能系统的充电、预并网和并网运行实验。实验结果验证了所提飞轮储能系统并网控制方法的可行性。  相似文献   

10.
为缓解微网模式切换时带来的电压、电流冲击,通过对微网无缝切换关键技术分析,提出基于频率扰动的微网有差预同步控制方案。为保证储能逆变器控制策略同步平滑切换,提出了基于VSG及电流权值调节的无缝切换控制策略。为实现控制策略的软转换,令VSG控制与PQ控制共用电流内环,并通过电流权值调节2种控制策略的外环参考电流实现平滑过渡,保证了控制策略与PCC点开关的同步切换,避免了物理开关切换造成的电压、电流冲击,有利于微网的稳定运行。仿真验证了所提控制策略可行性和有效性。  相似文献   

11.
为实现电动汽车充放储一体化电站中具有并联、双向运行特性的功率变换系统多模式运行,采用基于三层网络架构的集中控制体系,提出了一种集多种运行模式控制于一体的统一控制策略。该策略下各功率变换单元可依据调度指令在V2G和独立两种运行模式间灵活选取,同时结合单元充放电状态、输出视在功率和电池组荷电状态实现了功率优化分配。此外,针对模式切换过程中负载电压和并网电流波动机理进行分析。在统一控制策略中提出并引入了一种基于内环指令跟踪、外环软切换的双环切换方法,实现了运行模式间的无缝切换。仿真和实验结果验证了所提控制策略的可行性和有效性。  相似文献   

12.
基于储能的可再生能源微网运行控制技术   总被引:3,自引:0,他引:3  
建立了包括光伏、风电、储能和能量管理系统(EMS)的典型微网结构,给出了基于储能的微网组网方案和运行控制方式,分析了储能在微网离网运行、并网运行及无缝切换等过程中的控制作用。基于LCL滤波器的储能电压源型变换器,提出了包含逆变器滤波电感电流环、滤波电容电压环和并网电感电流环的三环控制策略,通过保持内部两环的稳定性实现微网运行模式的平滑转换。最后,搭建了微网研究与测试平台,验证了上述控制策略的有效性。  相似文献   

13.
针对难于实现并网/孤岛两种运行模式之间无缝切换的问题,提出一种基于虚拟同步发电机(VSG)统一电压、电流双环控制结构的逆变器并离网无缝切换控制策略。首先,对功频调节器、励磁调节器和电压、电流双环进行了设计,并给出了控制结构框图。其次,对传统并离网切换进行了分析,两种模式下控制器输出的结果不同,导致在切换的瞬间容易产生电流冲击,提出改进的预同步控制方法,控制简单,切换瞬间电流平滑过渡且能够抑制有功、无功功率的冲击,实现了并离网运行模式无缝切换。最后,通过仿真和实验结果验证了所提出控制策略的有效性。  相似文献   

14.
分布式发电系统通常需要两种控制方式,第一类并网方式(与大电网连接);第二类独立方式(微网方式)。以电池为储能单元的储能逆变器也相应存在两种控制模式:电流源模式和电压源模式。为提高在微网运行时电压源模式的动态响应,采用电压外环电感电流内环的双环控制策略,并给出设计方法。为充分验证储能逆变器的两种模式的性能,搭建了两台100 kVA储能逆变器的微网平台。实验结果表明电压源模式工作的逆变器提供的微网电压无较大的畸变,动态响应较快,维持了系统的稳定运行,获得预期的效果。  相似文献   

15.
采用Boost的两级式光伏发电并网逆变系统   总被引:17,自引:3,他引:14  
在光伏并网发电中,为了提高效率,必须实行最大功率点跟踪,而为了实现并网,直流侧电压必须高于电网电压幅值,这就限制了光伏电池电压的调节范围。对一种单相光伏发电并网逆变系统进行了研究,它由Boost DC/DC电路和逆变桥组成。前级Boost斩波电路则通过调节占空比而改变光伏阵列的输出电压,实现最大功率点跟踪;后级逆变电路采用电压外环,电流内环的双环控制方法,电压外环控制逆变侧电容电压的稳定,电流内环控制并网电流实现并网。在这种系统中,最大功率点跟踪和并网是相互独立的,互不干扰,使整个系统更加灵活可靠。主要研究了逆变系统各重要元件参数的选取方法以及逆变系统的控制方法。最后用MatlabR2007a/Simulink进行了仿真,证明了该逆变系统的可行性。  相似文献   

16.
《高压电器》2016,(11):181-187
针对微网系统在离网模式下,给不平衡负荷供电之一问题,文中采用三相四桥臂作为双模式变流器拓扑,并设计了并网与离网双模式工作及并离网模式切换的控制策略,可解决离网模式下不平衡负载引起的电压不平衡问题。根据不同模式下三相四桥臂变流器的数学模型,采用电网电压定向的电感电流闭环控制策略实现并网模式运行,采用双同步旋转坐标系下的正负序电压控制以及零序电压的比例谐振控制策略实现离网模式运行。同时,采用一种控制模式的平滑切换方法来实现并网与离网两种模式的独立运行。最后,通过仿真对采用的双模式变流器控制策略进行了验证。仿真结果表明,采用的双模式控制策略在并网模式下可以准确跟踪功率指令,在离网模式下可有效抑制不平衡负载的扰动,实现输出电压平衡。在并离网切换过程中,该控制方法能够减小负载电压变化与输出电流的冲击,实现负载的不间断供电。  相似文献   

17.
LCL滤波的三相并网逆变器电流双环控制策略   总被引:2,自引:2,他引:0       下载免费PDF全文
刘韬  郝翔  杨旭  黄浪 《电源学报》2012,10(4):7-12
对于LCL滤波的三相并网型逆变器系统,电网电压畸变会增加网侧电流总谐波。针对该问题,分析了传统逆变侧电流单环控制策略无法有效抑制电网电压畸变对网侧电流的影响。为了增加网侧电流对电网电压畸变的抗扰性,提出了电流双环的控制策略。内环通过PI控制器实现对逆变侧电流的控制,外环通过PI+PR的控制方案完成对网侧电流的控制。通过推导系统的输出导纳的频率响应,分析了在提出方案下,网侧电流能够更有效地抑制网侧电压畸变的影响。仿真以及100kW样机的实验结果验证了该控制策略的有效性。  相似文献   

18.
文章提出一种适用于飞轮储能系统并网的双电流闭环控制方法。在电网侧及飞轮侧控制系统中同时引入比例谐振控制器,避免了比例积分(proportional integral,PI)控制器跟踪正弦电流存在稳态误差的缺点,提高了系统的稳定性及电网电能质量。同时,采用电容电流内环反馈控制抑制LCL滤波器的谐振尖峰,提高进网功率因数。在充电阶段,电网侧变换器采用电压外环控制方式,飞轮侧变换器采用转速外环控制方式;在待机及并网运行阶段,电网侧变换器采用电网侧电流外环电容电流内环的控制策略,飞轮侧变换器采用直流母线电压外环电流内环的控制策略,以稳定直流母线电压。采用广义根轨迹法对电网侧控制器参数进行设计。搭建了飞轮储能系统并网控制模型,仿真结果验证了文章控制策略的有效性。  相似文献   

19.
基于储能的双模式逆变器可以在并网和离网两种模式下运行。并网运行时,由于电网电压的箝位作用,逆变器以电流源形式运行;离网运行时,为继续给重要负载供电需要双模式逆变器维持系统电压稳定。为保证对负载的不间断供电,需要实现并网/离网的无缝切换。从离网到并网切换时,需要调整双模式逆变器的逆变电压与电网电压一致;从并网到离网切换时,需要锁定切换前的负载电压的相位、幅值,以使离网后的逆变电压和并网电压保持一致。根据上述方法,在PSCAD/EMTDC软件中对双模式逆变器的并网/离网切换进行了仿真,在一台30kVA的双模式逆变器上进行实验。仿真和实验结果表明,该方法是有效的。  相似文献   

20.
为了确保全钒液流电池(VRB)储能系统的安全充放电,提出含DC/DC变换器的VRB储能系统的不同充放电控制模式。在建立VRB等效电路并验证其有效性的基础上,提出内环为VRB侧电感平均电流控制,外环为恒功率、恒压、涓流切换控制的DC/DC变换器双闭环策略,并结合DC/AC网侧变换器维持直流侧电压恒定。以VRB荷电状态及端电压为约束条件,提出对应的三阶段安全充放电控制模式。以含DC/DC变换器的5kW VRB储能系统为例,对不同充放电切换控制下的VRB运行特性进行了仿真,并与传统恒定功率无切换充放电控制进行对比,分析了恒功率充放电模式下的控制策略的动态响应能力。结果表明,提出的含DC/DC变换器的VRB不同充放电切换模式能更好地使VRB工作在安全运行区域,且具有良好的充放电动态响应速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号