首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Deactivation of Co–Ru/γ‐Al2O3 Fischer–Tropsch (FT) synthesis catalyst along the catalytic bed over 850 h of time‐on‐stream (TOS) was investigated. Catalytic bed was divided into four parts and structural changes of the spent catalysts collected from each catalytic bed after FT synthesis were studied using BET, ICP, XRD, TPR, carbon determination, H2 chemisorption and oxygen titration techniques. Rapid deactivation was observed during first 200 h of FT synthesis. In this case, the deactivation rate was not dependent on the number of the catalyst active sites. It was zero order to CO conversion and independent of the size of active sites. Beyond the TOS of 200 h, the deactivation could be simulated with a power law expression: . The physical properties of the catalyst charged in 1st half of the reactor did not change significantly. Interaction of cobalt with alumina and formation of mixed oxides of the form xCoO·yAl2O3 and CoAl2O4 was increased along the catalytic bed. Percentage reducibility and dispersion decreased by 2.4–25.5% and 0.5–8.8% for the catalyst in the beds 1 and 4, respectively. Particle diameter increased by 0.8–6.1% for the catalyst in the beds 1 and 4 respectively suggesting higher rate of sintering at last catalytic bed. The amount of coke formation in the 4th catalytic bed was 6 times more than that of in bed 1.  相似文献   

3.
4.
5.
The Fischer‐Tropsch synthesis (FTS) in gaseous and supercritical phases was examined in a continuous, high‐pressure fixed‐bed reactor by employing a cobalt catalyst (Co‐Ru/γ‐Al2O3). The kinetic modeling of the FTS was investigated in the reactor over a 60–80 mesh cobalt catalyst. The Langmuir‐Hinshelwood kinetic equation was used for both the Fisher‐Tropsch (FT) and water gas shift (WGS) reactions. The kinetic model was applied for simulation of the reactor with 16–20 mesh cobalt catalyst. The simulation results showed a good agreement with the experimental data. The experimental data showed that higher CO conversion and lower CH4 and CO2 selectivities were achieved in supercritical media compared to the gaseous phase. The BET surface area and pore volume enhancement results provided evidence of the higher in situ extraction and greater solubility of heavy hydrocarbons in supercritical media than in gaseous phases. Furthermore, the effects of supercritical solvent such as n‐pentane, n‐hexane, n‐heptane and their mixtures were studied. Moreover, the influence of reaction temperature, H2/CO ratio, W/F(CO+H2) and pressure tuning in the supercritical media FT synthesis were investigated, as well as the effect of the supercritical fluid on the heat transfer within the reactor. The product carbon distribution had a similar shape for all types of solvents and shifted to lighter molar mass compounds with increasing temperature, H2/CO ratio, and W/F(CO+H2). Finally, the product distribution shifted to higher molar mass hydrocarbons with increasing pressure. As a result, one may conclude that a mixture of hydrocarbon products of the FTS can be used as a solvent for supercritical media in Fischer‐Tropsch synthesis.  相似文献   

6.
7.
A novel MgCl2/SiO2‐supported Ziegler–Natta catalyst was prepared using a new one‐pot ball milling method. Using this catalyst, polyethylenes with different molecular weight distributions were synthesized. The effects of the [Si]/[Mg] ratio, polymerization temperature and [Al]/[Ti] ratio on the catalytic activity, the kinetic behaviour and the molecular weight and the polydispersity of the resultant polymer were studied. It was found that the polydispersity index of the polymer could be adjusted over a wide range of 5–30 through regulating the [Si]/[Mg] ratio and polymerization temperature, and especially when the [Si]/[Mg] ratio was 1.70, the polydispersity index could reach over 25. This novel bi‐supported Ziegler–Natta catalyst is thus useful for preparing polyethylene with a required molecular weight distribution using current equipment and technological processes. Copyright © 2005 Society of Chemical Industry  相似文献   

8.
BACKGROUND: A highly stable Fe/γ‐Al2O3 catalyst for catalytic wet peroxide oxidation has been studied using phenol as target pollutant. The catalyst was prepared by incipient wetness impregnation of γ‐Al2O3 with an aqueous solution of Fe(NO3)3· 9H2O. The influence of pH, temperature, catalyst and H2O2 doses, as well as the initial phenol concentration has been analyzed. RESULTS: The reaction temperature and initial pH significantly affect both phenol conversion and total organic carbon removal. Working at 50 °C, an initial pH of 3, 100 mg L?1 of phenol, a dose of H2O2 corresponding to the stoichiometric amount and 1250 mg L?1 of catalyst, complete phenol conversion and a total organic carbon removal efficiency close to 80% were achieved. When the initial phenol concentration was increased to 1500 mg L?1, a decreased efficiency in total organic carbon removal was observed with increased leaching of iron that can be related to a higher concentration of oxalic acid, as by‐product from catalytic wet peroxide oxidation of phenol. CONCLUSION: A laboratory synthesized γ‐Al2O3 supported Fe has shown potential application in catalytic wet peroxide oxidation of phenolic wastewaters. The catalyst showed remarkable stability in long‐term continuous experiments with limited Fe leaching, < 3% of the initial loading. Copyright © 2010 Society of Chemical Industry  相似文献   

9.
In this work, the composite catalysts, SO42/ZrO2/γ‐Al2O3 (SZA), with different ZrO2 and γ‐Al2O3 mass ratios were prepared and used for the first time for the carbon dioxide (CO2)‐loaded monoethanolamine (MEA) solvent regeneration process to reduce the heat duty. The regeneration characteristics with five catalysts (three SZA catalysts and two parent catalysts) of a 5 M MEA solution with an initial CO2 loading of 0.5 mol CO2/mol amine at 98°C were investigated in terms of CO2 desorption performance and compared with those of a blank test. All the catalysts were characterized using X‐ray diffraction, Fourier transform infrared spectroscopy, N2 adsorption–desorption experiment, ammonia temperature programmed desorption, and pyridine‐adsorption infrared spectroscopy. The results indicate that the SZA catalysts exhibited superior catalytic activity to the parent catalysts. A possible catalytic mechanism for the CO2 desorption process over SZA catalyst was proposed. The results reveal that SZA1/1, which possesses the highest joint value of Brφnsted acid sites (BASs) and mesopore surface area (MSA), presented the highest catalytic performance, decreasing the heat duty by 36.9% as compared to the catalyst‐free run. The SZA1/1 catalyst shows the best catalytic performance as compared with the reported catalyst for this purpose. Moreover, the SZA catalyst has advantages of low cost, good cyclic stability, easy regeneration and has no effect on the CO2 absorption performance of MEA. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3988–4001, 2018  相似文献   

10.
11.
CeO2‐CrOy loaded on γ‐Al2O3 was investigated in this work for the oxidative dehydrogenation (ODH) of propane under oxygen‐free conditions. The ODH experiments of propane were conducted in a fluidized bed at 500°C‐600°C under 0.1 Mpa. The prepared catalyst was characterized by N2 adsorption‐desorption measurements, H2‐temperature‐programmed reduction, O2‐temperature‐programmed desorption, NH3‐temperature‐programmed desorption, x‐ray photoelectron spectroscopy, and x‐ray diffraction. The change in the selectivity of propylene resulted from the thermal cracking of the propane and the competition for lattice oxygen in the catalyst between propylene formation and propane and propylene combustion. Therefore, to achieve higher propylene yield in the industry, the reaction temperature should be 550°C‐575°C for the 17.5Cr‐2Ce/Al catalyst. The results of H2‐TPR (from 0.2218 mmol/g‐0.3208 mmol/g) revealed that the addition of CeO2 can enhance the oxygen capacity of CrOy. Compared with that for 17.5Cr/Al, the conversion can be enhanced from 22.4% to 28.5% and the selectivity of propylene can be improved from 72.2% to 75.9% for the 17.5Cr‐2Ce/Al catalyst. In addition, CeO2 can inhibit the evolution of lattice oxygen (O2?) to electrophilic oxygen species (O2?), causing the average COx (CO and CO2) selectivity to decrease from 9.64% to 6.31%.  相似文献   

12.
13.
A series of χ wt % Pd‐(1‐χ) wt % Ir (χ = 0.75, 0.50, and 0.25) catalysts supported on γ‐Al2O3 have been prepared by co‐impregnation and calcination‐reduction, and subsequently employed in the hydrogenation of 2‐ethylanthraquinone—a key step in the manufacture of hydrogen peroxide. Detailed studies showed that the size and structure of the bimetallic Pd–Ir particles vary as a function of Pd/Ir ratio. By virtue of its small metal particle size and the strong interaction between Pd and Ir, the 0.75 wt % Pd–0.25 wt % Ir/Al2O3 catalyst afforded the highest yield of H2O2, some 25.4% higher than that obtained with the monometallic 1 wt % Pd catalyst. Moreover, the concentration of the undesired byproduct 2‐ethyl‐5,6,7,8‐tetrahydroanthraquinone (H4eAQ) formed using the Pd–Ir bimetallic catalysts was much lower than that observed with the pure Pd catalyst, which can be assigned to the geometric and electronic effects caused by the introduction of Ir. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3955–3965, 2017  相似文献   

14.
A deoxidizing catalyst was prepared in this paper. Several characterization techniques (XRD, SEM–EDS, TEM, TPD and TPR) were used to study its structure and properties. A normal pressure micro-reactor was built to study its deoxidizing performance. Results show that when inlet O2 concentration was 0.1%, space velocity was 3000–12 000 h−1 and operation temperature was above 80 °C, the outlet residual O2 can be as low as 1.0 × 10−6 (v/v). 300 h continuous operation shows that its deoxidizing activity was stable. Through comparison of the deoxidizing activities for fresh and deactivated catalyst and by simulating the water vapor contents in system, the mechanism of deactivation and reactivation was studied.  相似文献   

15.
16.
17.
α‐methylstyrene catalytic hydrogenation on Pd/Al2O3 is frequently used to characterize new reactors. However, whereas many authors report some problems of reproducibility or possible poisoning of the catalyst, no consistent advice is available in the literature to carry out the reaction without these problems. This work points out the inhibition of the reaction by trace amounts of water. An experimental procedure is explained to guarantee the reproducibility of the measures.  相似文献   

18.
A series of γ‐Al2O3‐supported nickel‐based catalysts were evaluated in continuous hydrogenation of toluene. Sr‐ and poly(ethylene glycol) 800 (PEG800)‐modified Ni/γ‐Al2O3 catalysts provided the best activity with high conversion of toluene and selectivity for methylcyclohexane which was ascribed to the addition of Sr and PEG800 during the preparation process, resulting in smaller and highly dispersed Ni species on the surface and in the pores of γ‐Al2O3. Furthermore, the formation of SrCO3 and NiAl2O4 is believed to be advantageous for the dispersion and stabilization of the active Ni species, accounting for its good stability.  相似文献   

19.
The selective hydrogenation of acetylene to ethylene over Pd‐Ag/α‐Al2O3 catalysts prepared by different impregnation/reduction methods was studied. The best catalytic performance was achieved with the sample prepared by sequential impregnation. A kinetic model based on first order in acetylene and 0.5th order in hydrogen for the main reaction and second‐order independent decay law for catalyst deactivation was used to fit the conversion time data and to obtain quantitative assessment of catalyst performances. Fair fits were observed from which the reaction and deactivation rate constants were evaluated. Coke deposition amounts showed a good correlation with catalyst deactivation rate constants, indicating that coke formation should be the main cause of catalyst deactivation.  相似文献   

20.
A dynamic Mars–van Krevelen kinetic model that unifies Standard and Fast SCR reactions into a single redox approach is herein proposed for V‐based catalysts for NOx removal from Diesel exhausts. Such a mechanistic model is consistent with the detailed catalytic chemistry proposed for the NH3‐NO/NO2 reacting system in which NO2 disproportionates to form nitrites and nitrates, nitrates are reduced by NO to nitrites in a key redox step, and nitrites react with NH3 to form N2 via decomposition of unstable ammonium nitrite. Intrinsic kinetic parameters were estimated by global multiresponse nonlinear regression of 42 transient runs. The model accounts for stoichiometry, selectivity, and kinetics of the global SCR process, reproducing successfully both the steady‐state and transient behaviors of the SCR reacting system over the full range (0–1) of NO2/NOx feed ratios in the 175–425°C temperature range. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号