首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
本文以基于电力电子变压器的高速列车牵引传动系统中的单相级联多电平H桥整流器为控制对象,以提升系统动态响应速度、减小网侧电流谐波含量为控制目标,提出了一种基于两矢量的有限集模型预测电流控制算法。首先,推导单相级联多电平H桥整流器的α-β静止坐标系下数学模型;然后,基于空间矢量调制思想,对单相级联多电平整流器进行基本电压矢量定义与空间扇区划分;在此基础上,建立包含最小电流误差的目标函数,通过对其求导实时计算出两个矢量的最优占空比,同时为了保证各模块直流侧电容电压的平衡关系,设计了选取冗余矢量的原则。与基于PI的瞬态电流控制算法相比,所提出的模型预测控制算法无需内环PI控制器,显著提高了电流内环的动态响应速度;最后,对所提算法与传统的瞬态电流控制算法进行硬件在环半实物实验对比研究,结果表明了所提算法的可行性与有效性。  相似文献   

2.
Control strategy of a cascaded multilevel converter based electrical power transformer (EPT) in a distribution system with capabilities of low voltage ride‐through and unbalanced load current management is investigated in this study. The mathematical model and decoupled control schemes of the system, including a high‐voltage side control scheme, an isolation‐stage control scheme, and a low‐voltage side control scheme, are presented in detail. A dual current control scheme is introduced to control both positive and negative sequence currents for enhancing the low voltage ride‐through capability of the high‐voltage side cascaded H‐bridge converter. Positive, negative, and zero‐sequence voltages are controlled for the low voltage side three‐phase four‐wire converter in the decoupled control scheme, respectively, for unbalanced load current management. A proportional resonant controller (PRC) is utilized to control the zero‐sequence voltage, while the root locus method is applied in the PRC design. Three‐dimensional space vector pulse width modulation (PWM) switching strategy is then used for the low voltage side converter. Simulation studies were conducted with MATLAB/Simulink to validate the coordinated control strategy. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

3.
针对三相三线制电力系统仅要求补偿谐波电流时,传统的基于三相级联H 桥的三相有源电力滤波器(APF)成本较高的问题,提出了一种基于两相级联 H 桥的三相 APF 拓扑结构。省去了传统三相级联 H 桥中任一相桥臂的 H 桥,不仅不影响补偿效果,而且能达到降低成本的目的。同时直流侧电压采用分层控制,谐波检测采用id-iq 电流检测策略。最后,通过搭建 PSCAD/EMTDC 仿真平台并验证。仿真结果表明,新拓扑结构应用于补偿三相三线系统中的谐波电流是可行的。  相似文献   

4.
有源滤波器(APF)和静止同步补偿器(STATCOM)在电力系统应用中都是独立开来,分别进行谐波抑制和无功补偿。将APF和STATCOM功能结合起来,以级联H桥换流器构成APF-STATCOM装置,同时实现无功补偿和谐波抑制。在分析级联H桥APF-STATCOM拓扑及其工作原理的基础上,提出了一种简单有效的控制策略;针对级联H桥换流器各子模块间的电容电压均衡问题,采用最近电平逼近调制(NLM)并提出了一种适用于级联H桥换流器的电容电压均衡控制策略。利用PSCAD/EMTDC对36级联H桥APF-STATCOM进行了建模仿真,结果验证了该控制策略和电容电压均衡控制策略的可行性和有效性,并表明所提出的电容电压均衡策略能有效避免H桥模块IGBT不必要的频繁开关,减少器件的开关频率。  相似文献   

5.
The large scale penetration of renewable energy resources has boosted the need of using improved control technique and modular power electronic converter structures for efficient and reliable operation of grid‐connected systems. This study investigates the performance of a grid‐connected 3‐phase 3‐level neutral‐point clamped voltage source inverter for renewable energy integration by using improved current control technique. For medium or high‐voltage grid interfacing, the multilevel inverter structure is generally used to reduce the voltage stress across the switching device as well as the harmonic distortion. The neutral‐point clamped voltage source inverter is controlled by using decoupling technique along with the proper grid synchronization via moving average filter–based phase‐locked loop. The moving average filter–based phase‐locked loop is used to reduce the delay in grid angle estimation under balanced as well as distorted grid conditions. A Lyapunov‐based approach for analysing the stability of the system has also been discussed. In this study, the hardware‐in‐loop (HIL) simulation of the control algorithm and the grid synchronization technique is realized using Virtex‐6 FPGA ML605 evaluation kit. The performance of the system is analyzed by conducting a time‐domain simulation in the Matlab/Simulink platform and its performance is examined in the HIL environment. The simulation and the hardware cosimulation results are presented to validate the effectiveness of the proposed control scheme.  相似文献   

6.
Recently, high‐voltage motor direct drive systems have been put to practical use, and various multilevel PWM strategies have also been proposed. This paper describes a multilevel PWM strategy [our group calls it the Carrier Phase Selection Method (CPS)] that has the lowest line voltage harmonic distortion in order to prevent the degradation of high‐voltage motor winding insulations. This method takes the adverse effect of dead time into consideration, and it controls the shift direction of a carrier phase. Therefore, a favorable output waveform without instantaneous voltage surges is achieved even if the line voltage level changes. Moreover, the switching transitions across all switching devices are well‐balanced, so the utilization of inverter unit cells is equalized. This is an important factor when designing the entire system. Based on simulation and experimental results, it is shown that this CPS method is particularly effective in high‐voltage motor direct drive systems. © 2008 Wiley Periodicals, Inc. Electr Eng Jpn, 165(2): 77–88, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20474  相似文献   

7.
This paper presents 2‐novel linear matrix inequality (LMI)‐based adaptive output feedback fault‐tolerant control strategies for the class of nonlinear Lipschitz systems in the presence of bounded matched or mismatched disturbances and simultaneous occurrence of actuator faults, including failure, loss of effectiveness, and stuck. The constructive algorithms based on LMI with creatively using Lyapunov stability theory and without the need for an explicit information about mode of actuator faults or fault detection and isolation mechanism are developed for online tuning of adaptive and fixed output‐feedback gains to stabilize the closed‐loop control system asymptotically. The proposed controllers guarantee to compensate actuator faults effects and to attenuate disturbance effects. The resulting control methods have simpler structure, as compared with most existing recent methods and more suitable for practical systems. The merits of the proposed fault‐tolerant control scheme have been verified by the simulation on nonlinear Boeing 747 lateral motion dynamic model subjected to actuator faults.  相似文献   

8.
This paper discusses power flow analysis and DC capacitor voltage regulation of a modular multilevel cascaded converter (MMCC) based on double‐star chopper cells (DSCC). This analysis reveals the relationship between the circulating current through the DC link and the average power flowing out of or into each chopper cell. The DC component of the circulating current supplies half the active output power to the upper and lower strings of the chopper cells, while in contrast the fundamental frequency component transfers an amount of power between the upper and lower strings. Thus, the MDCC–DSCC can balance the capacitor voltages among the cells by controlling the amplitude of the fundamental frequency component of the circulating current. A new control method based on power flow analysis is employed, and its effectiveness is verified by circuit simulation.  相似文献   

9.
This paper proposes a full‐bridge (d = 50%) cascaded buck topology which is a very suitable circuit for high voltage input–low voltage output applications with high output current. Benefiting from working under a large duty cycle, the proposed converter can easily achieve zero voltage switching turn‐on and turn‐off of active switches in a full bridge. Small‐signal model of this topology is analyzed through its corresponding peak current mode control. Its small‐signal transfer function is given, and the control loop design is discussed. Advantages of this topology and operation principles are analyzed. Design guidelines, drawn from this analysis, are applied on a low‐voltage (3.3 V) output voltage prototype to validate the proposed concept. © 2012 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

10.
This paper proposes a new voltage‐balancing circuit for the split DC voltages in a diode‐clamped five‐level inverter. The proposed circuit is based on a resonant switched‐capacitor converter (RSCC), which consists of two half‐bridge inverters, a resonant inductor, and a resonant capacitor. A new phase‐shift control of the RSCC is proposed to improve voltage balancing performance. Theoretical analysis reveals the rating of the RSCC and stored energy in the resonant inductor. Experimental results confirm the reduction of the inductor to one‐tenth in volume compared to a conventional voltage‐balancing circuit based on buck‐boost topology. Moreover, the proposed phase‐shift control has demonstrated that it is possible to eliminate the voltage deviation between the DC capacitors. © 2009 Wiley Periodicals, Inc. Electr Eng Jpn, 168(2): 69–79, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20719  相似文献   

11.
A new wide‐area damping control strategy is investigated for flexible AC transmission systems (FACTS) device using wide‐area measurement system (WAMS) signals. The purpose is to design a dynamic output wide‐area damping controller (WADC) for improving the stability of interconnected power systems. The time‐varying delay of wide‐area signal is incorporated into the design process, which can effectively reduce the delay effect on the damping performance. First, a discrete‐time plant model with time‐varying delay is established for power systems; then by using the proposed improved free‐weighting matrices (IFWMs) approach and a convex optimization algorithm, a new and less conservative delay‐dependent stability criterion, expressed in the terms of linear matrix inequalities (LMIs), is obtained without ignoring any useful terms on the difference of a Lyapunov function. Detailed case studies on a 4‐machine two‐area benchmark test system and 16‐machine five‐area NETS‐NYPS interconnected system show that the designed WADC can not only maintain effective damping performance under the condition of time‐varying delay but also get the maximum wide‐area time delay. © 2015 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

12.
The present work reports the realization of an analog fractional‐order phase‐locked loop (FPLL) using a fractional capacitor. The expressions for bandwidth, capture range, and lock range of the FPLL have been derived analytically and then compared with the experimental observations using LM565 IC. It has been observed that bandwidth and capture range can be extended by using FPLL. It has also been found that FPLL can provide faster response and lower phase error at the time of switching compared to its integer‐order counterpart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a free‐weighting matrix (FWM) method based on linear control design approach for the wide‐area robust damping (WARD) controller associated with flexible AC transmission system (FACTS) device to improve the dynamical performance of the large‐scale power systems. First, the linearized reduced‐order plant model is established, which efficiently considers the time delay of the remote feedback signals transmitted by wide‐area measurement systems. Then, based on the robust control theory, the design of the FACTS‐WARD controller is formulated as the standard control problem on delay‐dependent state‐feedback robust control, which is described by a set of linear matrix inequality constraints. Furthermore, in order to obtain the optimal control parameters that can endure the maximum time delay, a FWM approach is proposed to solve the time‐dependent problem of the time‐delay system. Meanwhile, an iterative algorithm based on cone complementary linearization is presented to search out the optimal control parameters. Finally, the nonlinear simulations on the 2‐area 4‐machine and the 5‐area 16‐machine test systems are performed, to evaluate the control performance of the proposed robust wide‐area time‐delay control approach. © 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

14.
In this letter, the voltage imbalance between the dual output DC voltages of a half‐bridge boost rectifier with mismatched loads is analyzed by adopting an averaged circuit model. A compensating signal proportional to the voltage difference is added in the current command to eliminate the voltage imbalance. In addition, the adverse effects of the compensating current to the input power factor are discussed. Experimental results on a prototype circuit are given to confirm the theoretical analysis. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, the use of a three‐level inverter as a shunt active power filter is carried out, taking advantage of the benefits of multi‐level inverter, namely, the reduction both in the overall switching losses and in total harmonic distortion. The main focus of this article is to investigate the potentialities of the inverter employed as shunt active power filter on the compensation of the reactive power and the mitigation of harmonics drawn from a nonlinear load and unbalanced sources. The most previously reported three‐level inverter‐based shunt active power filters have been controlled and monitored through conventional controllers, which require a complicated mathematical model. In order to overcome this problem, an extended intelligent controller is proposed for a three‐level shunt active power filter. The aim of the proposed fuzzy logic control algorithm is to improve the behavior of voltage across the floating capacitors in steady/dynamic states and to minimize the switches commutations by taking into account the references of the harmonic currents injected in the network. The proposed control strategy has been simulated, and the obtained results prove that it is very successful. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
High‐frequency alternating current has an extensive application as a result of outstanding advantages. The aim of the study is to develop a high‐frequency power source to feed the auxiliary loads of vehicle application such as electric fans, blower motors, and lighting. A feasible implementation of high‐frequency power source is examined by a full‐bridge LCLC resonant inverter. The corresponding control scheme is proposed for the fourth‐order resonant inverter to confront the control challenges of low output harmonics and dynamic nonlinear load. Firstly, an analysis parameter S r is defined to address the possible impacts of the varying operational frequency to output THD and ZVS features. Secondly, an integrated control scheme is presented to implement pulse‐width control at heavy load and frequency regulation at light load. Lastly, an experimental prototype is accomplished with the peak voltage of 35 V and the output power of 120 W. The accordance of experimental results and theoretical analysis testifies that the proposed control scheme can achieve the low harmonics and high conversion efficiency over a wide scope of operational conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents real time performance evaluation of three phase extension of an amplitude adaptive notch filter (AANF) for online estimation of frequency, amplitude, and sequence components of the input grid voltage signal. The performance of an extended AANF is compared with conventional synchronous reference frame-phase lock loop (SRF-PLL), enhanced phase lock loop (EPLL), and existing adaptive notch filter (ANF). Comparative analysis has been carried out based on their ability in extracting frequency and amplitude of input grid voltage signal under balanced and unbalanced voltage sag/swell, frequency shift and distorted grid condition. Three phase AANF method provides high degree of accuracy than SRF-PLL, EPLL, and ANF in extracting appropriate signal information for unbalanced and harmonically distorted grid condition. The important feature of this method is its amplitude adaptability, which improves its speed of response and accuracy when grid signal is of variable amplitude. OPAL-RT’s (OP4500) real time controller with an in-built Xilinx Kintex-7 FPGA processor is used for real time implementation. Experimental results validate fast and accurate performance of an extended AANF in extracting frequency, amplitude, and sequence components of the utility grid voltage signal, which can be further used for performance improvement of grid connected renewable energy systems, custom power devices, and flexible ac transmission systems (FACTS) devices.  相似文献   

18.
The theory of space vector pulse‐width modulation (SVPWM) technique for the three‐phase Z‐source inverter has been introduced in detail, and a novel implementation scheme based on the maximum constant boost control method is presented in this paper. Like the traditional carrier‐based maximum constant boost control strategy, the proposed control method is able to achieve the maximum voltage boost ability while always keeping the shoot‐through duty ratio constant. Besides, it inherits the advantages from the SVPWM technique. Compared with carrier‐based strategies, it has wider linear operation range and is easier for digital implementation. The number of switching transition in each switching cycle is reduced, which significantly decreases switching losses. To investigate the advantages of lessening switching losses, three optimal switching patterns are proposed and compared with the carrier‐based strategy. It is demonstrated that the number of switching transition can be reduced by 60% at most by the proposed SVPWM‐based control method. All the theoretical analysis has been validated by the simulation results in MATLAB/Simulink at last. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This paper focuses on the pinning control and adaptive control for synchronization of an array of linearly coupled reaction‐diffusion neural networks with mixed delays (that is, discrete and infinite distributed delays) and Dirichlet boundary condition. Firstly, the asymptotical synchronization of coupled semilinear diffusion partial differential equations with mixed time delays is achieved by employing pinning control scheme. The pinning controller is obtained by using Lyapunov‐Krasovskii functional stability theory. The stability condition is represented by linear matrix inequality. The controller gain matrix is easy to be solved. Secondly, the adaptive synchronization condition of an array of linearly coupled reaction‐diffusion neural networks with mixed delays is obtained by using adaptive control scheme. Finally, two numerical examples of coupled semilinear diffusion partial differential equations with mixed time delays are given to illustrate the correctness of the obtained results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号