首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
V型直链淀粉-正己醇复合物的制备及表征   总被引:1,自引:0,他引:1  
以B型微晶淀粉作为原料,分别在水和醇作溶剂的情况下,与正己醇络合制备得到V型复合物。应用扫描电镜(SEM)、X-射线衍射仪(XRD)、差式扫描量热仪(DSC)、傅里叶红外光谱仪等对两种条件下得到的V型直链淀粉-正己醇复合物的晶体结构进行了表征。应用红外光谱对水及醇溶剂法制备得到的V型直链淀粉-正己醇复合物进行测定,定性确定了V型复合物中正己醇配体的存在;进一步应用主成分分析方法(PCA)对红外吸收光谱进行分析。结果表明:水及醇溶剂法制备得到V型直链淀粉-正己醇复合物的水化物和无水形式晶体。水化物形式晶体颗粒间粘连较严重,无水形式晶体的颗粒直径均为0.5~1μm,二者的结晶度均达到70%以上。V型直链淀粉-正己醇复合物的水化物与无水形式晶体的熔化温度几乎相同,且其复合物中醇类配体的含量分别为9.79%和4.3%。  相似文献   

2.
以马铃薯淀粉为原料制备得到直链淀粉,加入一定比例的茶多酚制备茶多酚/直链淀粉复合物。通过单因素实验,研究反应时间、茶多酚添加量和反应温度对茶多酚包埋效果和复合物相对结晶度的影响。通过X-射线衍射图谱分析得到最佳结晶度的复合条件,并对最优复合物进行扫描电子显微镜(SEM)、X-射线衍射(XRD)、红外光谱(IR)的分析和测试。结果表明,最优结晶结构的制备条件为:反应时间为1 h、淀粉/茶多酚配比为10:1、反应温度为50 ℃,在该工艺下,制得的B型复合物的结晶度最高,为61.51%;XRD测试复合物为典型的B型结晶结构;SEM图片显示复合物颗粒破碎,形状不规则;IR光谱中,由于直链淀粉-正辛醇复合物中淀粉和正辛醇发生叠加,其特征吸收峰的峰强度比茶多酚/直链淀粉复合物与B型微晶淀粉特征吸收峰的峰强度大。  相似文献   

3.
以B型微晶淀粉为原料,在一定的条件下,分别与乙醇、正丁醇、正己醇和正辛醇复合,制备得到系列的V型直链淀粉-醇类复合物。应用红外光谱对得到的V乙醇、V正丁醇、V正己醇、V正辛醇进行测定,定性确定了V型复合物中醇类配体的存在;进一步应用主成分分析方法(PCA)结合SPSS13.0、DPS7.05统计软件对红外吸收光谱进行分析计算。结果表明,制备得到的V乙醇、V正丁醇、V正己醇和V正辛醇复合物中醇类配体的含量分别为:19.8%、14.1%、9.79%、8.3%。  相似文献   

4.
以B型微晶淀粉为原料、正辛醇为配体,在Et OH/H2O体系中采用加热回流的方法制备得到了直链淀粉-正辛醇复合物。通过单因素实验,探讨了淀粉/辛醇的配比、乙醇浓度、结晶冷却条件、保温温度和保温时间对复合物形成的影响。运用X射线衍射对复合物的结晶结构进行对比分析,确定制备直链淀粉-正辛醇复合物的最佳工艺条件为淀粉/辛醇的配比10∶1,乙醇浓度为35%,保温温度80℃,保温时间60 min,结晶冷却速率是5℃/h。在此条件下,制得的复合物为V型结构,其结晶度可达到61.29%。  相似文献   

5.
以B型淀粉为原料,溶于乙醇/水溶液中,在加热回流下加入一定比例正辛醇的乙醇溶液,通过单因素实验,探讨了淀粉/辛醇的配比、乙醇浓度、结晶冷却条件对复合物形成的影响,得到V型直链淀粉-正辛醇最佳制备条件。采用XRD、IR、SEM、DSC和GPC对复合物的结构与性能进行表征。结果表明,制备直链淀粉-正辛醇复合物的工艺条件为:淀粉/辛醇的配比10:1,乙醇浓度为35%,结晶冷却速率是5℃/h。在该工艺条件下,制得的复合物为V型结构,其结晶度可达到57.85%;SEM测试表明复合物颗粒直径约为3μm;IR显示复合物键的相关特征;DSC分析表明V型复合物的稳定性小于B型微晶淀粉;凝胶渗透色谱表明复合物的相对分子量及分布,复合物的重均分子量为3243。  相似文献   

6.
以B型微晶淀粉为原料、正癸醇为配体,制备得到了V型直链淀粉-正癸醇复合物。研究了配体添加量、乙醇浓度、结晶温度等因素对复合物形成的影响,通过X-射线衍射图谱(XRD)分析得到最佳复合条件,并对最优的V型复合物进行扫描电镜(SEM)、红外(IR),差示扫描量热分析(DSC)表征,研究结果表明,最优的制备条件为:淀粉/正癸醇配比为10:2.5、溶剂中乙醇溶度为9.10%、结晶温度为50℃,最优条件下制得的V型复合物的结晶度最高,为61.28%;SEM图片显示B型淀粉为球状颗粒,而V型淀粉为圆饼状颗粒;IR图谱中,由于V型复合物中淀粉和正癸醇发生叠加,其特征吸收峰的峰强度比B型淀粉特征吸收峰的峰强度大;DSC图谱显示V型复合物的吸收峰峰值温度比B型低。  相似文献   

7.
锥栗直链淀粉-脂肪酸复合物的结构特性   总被引:3,自引:1,他引:2  
以自制锥栗直链淀粉为原料,利用DMSO水溶法在3种不同结晶温度下(30、60、90℃)制备己酸、葵酸、硬脂酸的直链淀粉-脂肪酸复合物,并对其结构特性进行了研究。试验结果表明:与锥栗直链淀粉比较,锥栗直链淀粉-脂肪酸复合物的吸水率、碘亲合力、蓝值、微晶比例与结晶度都下降;就己酸、葵酸、硬脂酸而言,较长的链长或较高的温度均有利于复合物的形成与稳定;锥栗直链淀粉-脂肪酸复合物属于典型的V型晶体,且它们的微晶比例、结晶度与脂肪酸性质有关,同一温度下制备的不同脂肪酸复合物,其微晶比例与结晶度均随脂肪酸碳链增长而降低;同种脂肪酸与锥栗直链淀粉形成的复合物,其微晶比例与结晶度则随复合物形成温度升高而降低。  相似文献   

8.
以B-型微晶淀粉为原料,经二甲亚砜溶解后,分散到热水中,随后加入一定比例的油酸的乙醇溶液中,再经过混合、结晶、离心分离、洗涤,制得淀粉-油酸复合物。X-射线衍射测试结果表明,随着淀粉:油酸配比的增加和淀粉浓度的增大,得到的V-型淀粉的X-射线衍射峰的强度和尖锐程度都有所增加,并且结晶度也得到了提高;较高的结晶温度、以及较低的冷却温度也有利于结晶度的提高。  相似文献   

9.
淀粉-脂肪酸复合物的制备通常采用直链淀粉作为基质,但淀粉中直链淀粉含量较少、且价格高昂,限制了淀粉-脂肪酸复合物在食品工业中的广泛应用。以蜡质玉米淀粉为考察对象,通过利用生物酶法(淀粉蔗糖酶和普鲁兰酶)定向修饰其分子结构,随后与油酸复合构建淀粉-油酸复合物,探究支链淀粉分子结构对淀粉-油酸复合物的构建及其理化性质的影响。结果表明,蜡质玉米淀粉经过淀粉蔗糖酶改性修饰后,其分支链得到显著延长,而普鲁兰酶的改性修饰则特异性地水解淀粉的分支点。晶体衍射和热特性分析显示,淀粉支链延长修饰或分支点水解均促进了V型淀粉-油酸复合物的形成,V型结晶度最高可达33.1%,且复合物的峰值糊化温度达到91.1℃。体外消化表明,淀粉-油酸复合物中的抗性淀粉含量可达49.6%,证明V型结晶结构具有抗酶解特性。  相似文献   

10.
为探究抗性淀粉制备新途径,提高大米特别是碎米资源的利用价值,以大米淀粉为原料,水相法制备大米辛烯基琥珀酸淀粉酯(OSA淀粉),以取代度DS和反应效率RE为考察指标,探讨反应温度、反应pH、酸酐滴加时间和淀粉浆浓度对DS和RE的影响。对OSA淀粉进行湿热处理,探究湿热处理时间对抗性淀粉含量和理化特性的影响,并进行体外消化试验。结果表明:制备OSA淀粉适合的工艺条件为反应温度40 ℃、反应pH为9.0、酸酐滴加时间为4 h、淀粉乳浓度30%,此条件下得到的OSA淀粉DS为1.3915,RE为78.2%。将此条件获得的OSA淀粉湿热处理18 h,抗性淀粉含量从25.2%增加至42.2%。在模拟胃肠道中消化水解率为58.8%。  相似文献   

11.
亚麻籽油因其高含量的不饱和脂肪酸,在空气中极易氧化变质,导致感官品质下降。粉末油脂技术不仅使油脂对环境的抵御能力增加,而且还降低或掩盖了油脂的不良味道、气味等。本文以普通玉米淀粉和蜡质玉米淀粉为原料,利用反溶剂法制备了V型淀粉,与一定比例的亚麻籽油干法加热制备粉末油脂,并研究了复合温度对其理化性质的影响。V型淀粉的吸油能力较好(1.54 g/g),优于商业多孔淀粉(1.08 g/g)。动态光散射及X射线衍射显示,随着温度的升高,V型淀粉制备的油脂粉末的粒径逐渐降低、相对结晶度逐渐增大,表明V型淀粉的单螺旋疏水空腔参与了对油脂的吸附。激光共聚焦结果显示,温度升高油脂的扩散速度加快,较高温度下表现出了更高程度的复合;红外光谱显示,随着复合温度上升,1060/1022 cm-1峰值从0.81升至1.07,表明AS-NMS的短程分子有序性升高。该研究以V型淀粉为包埋壁材,生物相容性高,工艺简单绿色,为粉末油脂的加工利用提供了新思路。  相似文献   

12.
利用产L-天冬氨酸酶的大肠杆菌HY-05,通过游离细胞法转化合成L-天冬氨酸,以硫酸萃取法从发酵液中提取L-天冬氨酸。为解决工艺中富马酸包结问题,通过单因素试验对脱色条件和结晶过程进行了优化,并在此基础上,选取结晶温度、硫酸滴加速度、冷却时间3个因素为响应变量,以L-天冬氨酸含量为响应值,利用Box-Behnken试验设计响应面试验。结果表明,最佳脱色条件为脱色温度60 ℃,活性炭添加量0.15%;最佳硫酸酸化工艺条件为结晶温度91 ℃,硫酸滴加速度23 mL/h,冷却时间12 min。在此优化条件下,L-天冬氨酸含量为98.22%,较优化前提高了7.42%。  相似文献   

13.
以酸解马铃薯淀粉和油酸为原料制备酸解马铃薯淀粉-油酸复合物,运用X-射线衍射(X-RD)技术探讨了淀粉酸解时间、原料配比和淀粉浓度对复合物结晶的影响.结果表明:酸解马铃薯淀粉-油酸复合物为V-型结构,随着酸解时间的延长和原料配比的增大,衍射峰的强度越来越大,复合物的结晶结构越来越完整,但相互之间结晶度变化不明显,当原料浓度为2%时,所形成的复合物的结晶度最高,约为82.23%.  相似文献   

14.
This study was carried out to investigate the optimum conditions of cross‐linking β‐cyclodextrin (β‐CD) and recycling for cholesterol removal in milk and cream. The cross‐linked β‐CD was prepared with a 15% adipic acid solution, and the water solubility of the β‐CD was measured for the optimum conditions based on mixing temperature, mixing time, cross‐linking temperature, cross‐linking reaction time and cooling time. In the results of this study, optimum conditions were 80 °C mixing temperature, 2 h mixing time, 60 °C cross‐linking temperature, 24 h cross‐linking reaction time and 48 h cooling time. After determining the optimum conditions, the recyclable yields of the cross‐linked β‐CD ranged from 90.01% to 55.17% in six recyclings and the percentage of cholesterol removal by 15% cross‐linked β‐CD was over 90% until eighth recycling. On the basis of the results, this study suggests that 15% adipic acid‐added cross‐linked β‐CD maximised recyclable yield and that cholesterol removal was improved during recycling.  相似文献   

15.
目的制备盐酸川芎嗪并优化其制备工艺方法梯度冷却法滴制,以滴丸圆整度和拖尾为指标单因素考察影响因索,通过正交试验优选制备工艺。结果确定最佳工艺为:聚乙二醇600(PEG 6000)与硬脂酸为基质,比例为PEG 6000:硬脂酸为4:1,药物与基质比例为1:3料温为70℃。冷凝柱温度梯度为:上部30~0℃。调节滴速为45滴/min,滴距5 cm时圆整度好,无拖尾现象,滴丸中药品缓慢释放。结论实验数据,图表分析,实验采用优选制备缓释滴丸的方法 ,符合实验预期结果 。  相似文献   

16.
目的制备盐酸川芎嗪并优化其制备工艺方法梯度冷却法滴制,以滴丸圆整度和拖尾为指标单因素考察影响因素,通过正交试验优选制备工艺。结果确定最佳工艺为:聚乙二醇600(PEG6000)与硬脂酸为基质,比例为PEG6000:硬脂酸为4:1,药物与基质比例为1:3料温为70℃。冷凝柱温度梯度为:上部30~0℃。调节滴速为45滴/min,滴距5cm时圆整度好,无拖尾现象,滴丸中药品缓慢释放。结论实验数据,图表分析,实验采用优选制备缓释滴丸的方法,符合实验预期结果。  相似文献   

17.
实验采用直接熔融缩聚法,以十二烷二元酸和乙二醇为主要原料合成高硬度环保聚酯蜡,并用IR进行了结构表征,考察了反应物料比、反应温度、反应时间、催化剂种类对产物的影响。适宜的反应条件:n(乙二醇)∶n(十二烷二元酸)=1.5∶1,反应温度为160℃、反应时间为6 h,以对甲苯磺酸为催化剂。此条件下产物的滴点98℃,针入度1.6(0.1mm),酸值6.25 mg KOH/g,黏度133.14 mm^2/s。  相似文献   

18.
使用紫虫胶作为有机凝胶因子制备稳定型花生酱,并对其工艺条件进行优化。以析油率为指标,紫虫胶添加量、加热温度、加热时间和冷却温度为因素变量,进行响应面优化试验,得到了最优工艺条件,并进行了花生酱感官评鉴。结果表明,紫虫胶添加量为3.2%(w/w)、加热温度为90 ℃、加热时间为40 min、冷却温度为1 ℃时,制得的有机凝胶花生酱最稳定,此时析油率仅1.24%。在最优工艺条件下制备的有机凝胶花生酱与商品花生酱相比,析油率更低,感官品质更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号