首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
以炭纤维无纬布/网胎针刺整体毡为增强体,采用化学气相浸渗(CVI)法制备不同密度的炭/炭(C/C)多孔体,并进一步加压浸渗铜合金制备炭/炭-铜(C/C-Cu)复合材料,研究C/C多孔体密度对C/C-Cu复合材料压缩性能的影响。结果表明:C/C-Cu复合材料压缩强度在平行和垂直方向差异小;随C/C多孔体密度升高,C/C-Cu复合材料压缩强度提高,各向异性得到改善;多孔体密度为1.65 g/cm3时,材料在平行和垂直两个方向的压缩强度都达到最大值,分别为323.8 MPa和326.6 MPa;平行方向以多层复合剪切破坏形式为主;垂直方向基本沿45°对角线方向剪切破坏。  相似文献   

2.
以短炭纤维为增强体,采用浸渍模压炭化增密工艺制备C/C多孔体,结合反应熔渗法制备C/C-SiC复合材料。采用电子万能试验机测定复合材料的压缩性能,利用扫描电镜观察该材料及其断口显微形貌;研究纤维分散性对C/C多孔体孔隙和C/C-SiC复合材料压缩性能的影响。结果表明:分散炭纤维制备的C/C多孔体中纤维分布更均匀,没有因纤维束搭桥而产生大孔隙等缺陷;分散纤维增强的C/C-SiC复合材料在平行方向和垂直方向均有较好的压缩性能,其压缩强度分别为100.6 MPa和76.2 MPa。  相似文献   

3.
采用反应熔渗法(reactive melt infiltration,RMI)制备ZrC改性多孔C/C复合材料,研究不同孔隙度的C/C多孔体在熔渗过程中的增密行为和渗Zr后的相组成及微观形貌,探寻具有最佳熔渗效果的C/C多孔体,并研究所得C/C-ZrC复合材料在不同温度下的氧乙炔焰烧蚀行为。结果表明,随C/C多孔体密度增加,C/C-ZrC复合材料的密度降低;其中密度为1.40 g/cm3的多孔体熔渗效果最佳,开孔隙率由熔渗前的28.2%降低到6.6%。;熔渗的Zr液易与网胎层处的炭纤维和基体炭反应,生成的ZrC陶瓷相主要分布在原网胎层位置。择取原始密度为1.40 g/cm3的C/C多孔体熔渗后进行60 s的氧乙炔焰烧蚀实验,在3 000℃下的线烧蚀率和质量烧蚀率分别为0.003 3 mm/s和0.004 2 g/s,在2 500℃下的线烧蚀率和质量烧蚀率分别为0.008 0 mm/s和0.009 0 g/s,C/C-ZrC复合材料在3 000℃下的抗烧蚀性能明显优于2 500℃下的抗烧蚀性能。  相似文献   

4.
以不同纤维体积分数(21%、26%、32%)、不同布毡质量比(3∶1,2∶1,1∶1)的针刺整体毡为预制体,采用化学气相渗透法(Chemical vapor infiltration,CVI)制备平板炭/炭(C/C)复合材料,研究预制体结构对CVI致密化过程的影响.结果表明:随纤维体积分数增加,整体毡的增密速率及最终密度都逐渐减小:布毡比对增密速率及最终密度影响很小.材料网胎中热解炭圆壳厚度沿材料厚度方向呈内部小、两侧大的对称分布;增加纤维体积分数或增加布毡比,材料内部的热解炭增厚程度随之减小.纤维体积分数为21%的预制体最适宜采用CVI工艺进行增密,增密80 h密度达到1.69 g/cm3,热解炭生长均匀.  相似文献   

5.
采用真空无压熔渗工艺制备炭纤维整体织物炭/炭-铜(C/C-Cu)复合材料,在改装的QDM150型干式摩擦性能试验机上进行载流条件下的干滑动模拟实验,研究电流及紫铜对偶盘转速对C/C-Cu复合材料摩擦磨损性能的影响规律.利用扫描电镜观察分析磨损表面及磨屑形貌.结果表明:C/C-Cu复合材料的摩擦因数随电流增大而减小,质量磨损率随电流增大而增大,接触表面的化学反应使得正极的磨损大于负极;复合材料的摩擦因数和磨损率均随着转速增大而降低.扫描电镜观察分析发现正极生成的磨屑主要以片状剥落层的形式存在,而负极的磨屑细小松散,呈等轴状.  相似文献   

6.
不同试验模式下C/C-Cu复合材料的摩擦磨损特性   总被引:1,自引:0,他引:1  
采用无压熔渗工艺制备1种新型的具有自润滑耐磨性能的炭纤维整体织物/炭-铜(C/C-Cu)复合材料,分别在环-块运动模式、销-盘运动模式和往复运动模式下对该材料的摩擦磨损特性进行研究,并与粉末冶金方法制备的滑板用C/Cu复合材料进行性能比较。结果表明:C/C-Cu复合材料在不同试验模式下表现出迥异的摩擦磨损特性。往复运动模式下试样表面形成完整光滑的磨屑层,摩擦因数和磨损量均分别维持在0.02和1.70 mm3的较低水平,摩擦磨损性能优于C/Cu复合材料;环-块模式下试样磨损面粗糙,摩擦因数最高,达到0.25以上,磨损量最低,仅为0.75 mm3与C/Cu复合材料的摩擦磨损性能相当;销-盘模式下试样的磨损量远高于其它2种摩擦模式,最高达55 mm3,摩擦磨损性能比C/Cu复合材料差。  相似文献   

7.
短纤维增强C/C-SiC复合材料的制备工艺   总被引:1,自引:4,他引:1  
为缩短制备周期和降低成本, 采用水悬浮法制得含硅短炭纤维料饼, 经树脂模压成形和炭化后成为预制体, 再经浸渍/炭化增密和高温反应生成SiC, 制备了C/C SiC复合材料, 并对材料的显微组织、物相组成、石墨化度、力学性能和摩擦磨损性能进行了研究。结果表明制备的预制体密度为1.1 g·cm-3左右, 短炭纤维优先在摩擦面上交错排布, 部分在厚度方向上排布, 预制体中硅颗粒分布均匀; 最终石墨化处理后, 复合材料密度为1.75 g·cm-3左右, 组成相为炭和βSiC, 其中炭的石墨化度为54%左右; 复合材料的破坏形式为脆性断裂, 材料基本具有功能材料应具备的结构力学性能; 随炭纤维体积含量的增加, 材料的摩擦因素和磨损率均呈下降趋势,纤维体积含量为25%时具有适中的摩擦磨损性能, 摩擦因素为0.28, 磨损率为2.75 mm3·kJ-1。  相似文献   

8.
热解炭结构对C/C复合材料摩擦磨损性能的影响   总被引:2,自引:0,他引:2  
以炭纤维整体毡为预制体,采用热梯度化学气相渗透(CVI)工艺制备了2种不同结构基体炭的C/C复合材料,即粗糙层结构材料与光滑层结构材料。研究了2种不同结构基体炭的C/C复合材料在沉积态和热处理态的显微结构、热物理性能及摩擦磨损性能。研究结果表明,在沉积态,2种结构材料都产生严重的氧化磨损,提高材料的石墨化度可显著降低材料的氧化磨损;不管是在沉积态还是在热处理态,RL结构材料的刹车性能曲线都明显优于SL结构材料的刹车性能曲线,这表明热解炭的微观结构不同是造成C/C复合材料摩擦性能差异的根本原因。  相似文献   

9.
分别采用国产聚丙烯腈基(即PAN基)炭纤维CCF700(A)和CCF300(B)及日本东丽PAN基炭纤维T300(C)编织二维针刺毡预制体,通过化学气相沉积结合树脂浸渍炭化增密技术制备飞机刹车副用炭/炭复合材料,在HJDS-Ⅱ型地面惯性台上测试这3种炭/炭复合材料的制动摩擦特性。结果表明:用国产炭纤维制备的炭/炭复合材料样件的整体石墨化度低于用进口炭纤维制备的样件。在模拟正常着陆能载下,国产炭纤维增强样件的减速率高于进口纤维增强样件。其中,采用CCF700炭纤维制备的材料A的摩擦因数较高、波动明显,而采用CCF300炭纤维制备的材料B的摩擦因数稳定在0.28左右。同时,刹车盘A和B的刹车过程相对平稳,刹停时间短,但刹车盘C在刹车结束前有明显的刹车力矩回升,有利于刹车过程的稳定性。材料A表面形成较厚的摩擦层,而材料B的摩擦表面摩擦层较薄,这与CCF300炭纤维具有良好的耐磨性有关。  相似文献   

10.
采用熔渗法对C/C多孔坯体进行预熔渗Ti处理,再用NiAl对预熔渗Ti后的C/C多孔坯体进行金属基体改性,制备出NiAl/TiC金属陶瓷改性C/C复合材料,并初步探讨C/C复合材料中NiAl/TiC金属陶瓷复合结构的形成机理及其对改善复合材料力学性能的作用机理。研究结果表明:预熔渗Ti后,Ti与基体炭反应生成TiC。由于NiAl与TiC润湿性好,生成的TiC可有效改善NiAl在C/C多孔坯体中的熔渗深度。NiAl在C/C多孔坯体中的熔渗深度为3~5 mm,同时,NiAl金属相与TiC陶瓷相在材料中呈镶嵌结构复合生长且分布无规则。经NiAl/TiC金属陶瓷熔渗后,复合材料的密度达到2.39 g/cm3,开孔率为13.44%,抗压强度为85.3 MPa,抗弯强度为67.2 MPa。  相似文献   

11.
杨晓岚 《有色金属加工》2010,39(3):61-62,46,54
对实时系统中的定时任务的实现方法和应用进行介绍与分析,并对在VisualC++中实现定时任务的多种方法进行了分析比对,此外还对时钟系统的管理进行了较为深入的研究。  相似文献   

12.
以密度分别为0.92,1.10和1.46 g/cm3的多孔C/C材料为坯体,采用熔融渗硅法获得密度分别为1.94,1.86和1.79 g/cm3的C/C-SiC复合材料A、B和C。将C/C-SiC复合材料与40Cr钢配副进行滑动摩擦实验,研究其摩擦磨损行为。结果表明:随载荷增加,坯体密度为1.83 g/cm3的材料B的摩擦因数较稳定,基本围绕0.60波动,波动幅度0.2。材料A的摩擦因数波动幅度为0.3,而材料C的摩擦因数呈直线下降,降幅最大达0.5。但随时间延长,在试验载荷下,材料A的摩擦因数稳定性最好,波动幅度为0.07。SEM形貌表明,低载荷下,C/C-SiC复合材料的陶瓷相磨屑易聚集在摩擦膜边缘,而高载荷下磨屑分布较均匀,但摩擦表面都较粗糙,未形成完整、致密的摩擦膜。  相似文献   

13.
通过对活性炭载体进行不同条件的超声波处理获得了具有不同表面化学性质的载体,使用比表面积(BET)、酸碱滴定等技术手段对载体的物理化学性质进行了表征。将经过超声波处理的活性炭载体制备成Pt/C催化剂,并将催化剂直接用于催化反应,考察了活性炭载体的不同超声波处理条件对Pt/C催化剂性能的影响。实验发现,活性炭载体经过超声波处理后,表面灰分含量、pH值和中孔孔容有较大的变化;使用经过60min超声波处理后中孔孔容较大的活性炭作为载体制备的Pt/C催化剂,在催化加氢反应性能测试中显示了最高的催化活性。在此基础上,就活性炭载体的超声波处理对Pt/C催化剂活性的影响进行了讨论。  相似文献   

14.
C/SiC复合陶瓷与铌合金的活性钎焊   总被引:1,自引:0,他引:1  
用Ag-Cu-Tj活性钎料对C/SiC复合陶瓷与Nb合金进行了真空钎焊.结果表明,适合该陶瓷钎焊的Ag-Cu-Ti钎料的Ti含量以2.5%~3.0%(质量分数)为宜;但Ag-Cu-Ti2.5钎料直接钎焊陶瓷与金属,焊缝及陶瓷一侧有裂纹和孔洞等缺陷;钎料中引入Mo颗粒后有效缓解了残余应力,实现了陶瓷与金属的气密连接.界面反应产物主要是TiC,TiSi,Cu4Tu,Cu3Ti.  相似文献   

15.
以短炭纤维为增强纤维,以炭粉、Si粉和树脂为基体来源,采用温压—原位反应法制备C/C-SiC材料,研究该材料的力学性能及破坏机理。结果表明:C/C-SiC制动材料的纵向和横向抗弯强度分别为76 MPa和62 MPa,以韧性断裂为主,弯曲破坏表现为裂纹偏转、纤维桥接、纤维拔出和界面脱粘。纵向抗压强度达112 MPa,纵向压缩破坏表现为韧性断裂,以对角剪切破坏方式为主;横向抗压强度达84 MPa,横向压缩破坏主要表现为脆性断裂,以多层复合剪切破坏方式为主。材料的冲击韧性为3.1 kJ/m2。  相似文献   

16.
采用等离子喷涂技术,在C/C-Cu复合材料表面制备钨涂层,在真空炉中进行真空热处理。研究的热处理对涂层结构和氧乙炔焰烧蚀性能的影响。结果表明:未热处理的钨涂层与C/C-Cu复合材料结合良好,钨多以扁平颗粒堆叠成膜,颗粒之间有裂纹等缺陷,其物相组成主要是W。热处理后,C/C-Cu复合材料内的铜向钨涂层渗透,涂层更加致密,但基体与涂层之间的孔隙增加、结合较松散,涂层内有WC生成。氧乙炔焰30 s烧蚀实验表明,C/C-Cu复合材料的质量损失率为5.6 mg/s,未热处理的C/C-Cu复合材料钨涂层的抗烧蚀性能好,其质量损失率为0.9 mg/s,但热处理后的C/C-Cu复合材料钨涂层的抗烧蚀性能显著降低,质量损失率达12.0 mg/s。  相似文献   

17.
以不同酚醛树脂制备的C/C-SiC复合材料的力学性能   总被引:1,自引:1,他引:0  
选用热固性酚醛树脂A和热塑性酚醛树脂B分别与短炭纤维、石墨粉、硅粉、碳化硅按一定比例混合后,采用温压-原位反应法,制得具有不同树脂炭基体的C/C-SiC复合材料的试样1和2,并对其力学性能进行研究,以期优化该复合材料的成分配方和进一步提高其技术性能。结果显示:试样1在垂直于纤维层方向的压缩载荷及弯曲载荷作用下,未出现纤维拔出、脱粘等现象,界面结合较强,呈现脆性断裂,压缩强度σ⊥=60.7MPa,弯曲强度σb=34.5MPa;而在平行于纤维层的压缩载荷作用下,纤维与基体存在剪切作用,出现纤维脱粘,呈现韧性断裂,σ∥=52.6MPa。试样2由于纤维的分散性不好,大量聚集在一起,在压缩和弯曲载荷作用下,均存在纤维的拔出和脱粘现象,界面结合较差,材料呈现韧性断裂,强度较低,σ⊥=45.8MPa,σ∥=19.4MPa,σb=16.1MPa。  相似文献   

18.
C/C复合材料致密化工艺研究新进展   总被引:1,自引:0,他引:1  
介绍了C/C复合材料的致密化工艺,包括液相浸渍工艺、化学气相沉积工艺、快速低成本致密化工艺以及其它致密化工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号