首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We derive a nonequilibrium thermodynamics identity (the "differential fluctuation theorem") that connects forward and reverse joint probabilities of nonequilibrium work and of arbitrary generalized coordinates corresponding to states of interest. This identity allows us to estimate the free energy difference between domains of these states. Our results follow from a general symmetry relation between averages over nonequilibrium forward and backward path functions derived by Crooks [Crooks, G. E. Phys. Rev. E 2000, 61, 2361-2366]. We show how several existing nonequilibrium thermodynamic identities can be obtained directly from the differential fluctuation theorem. We devise an approach for measuring conformational free energy differences, and we demonstrate its applicability to the analysis of molecular dynamics simulations by estimating the free energy difference between two conformers of the alanine dipeptide model system. We anticipate that these developments can be applied to the analysis of laboratory experiments.  相似文献   

2.
The quantum dynamics of the hydride transfer reaction catalyzed by liver alcohol dehydrogenase (LADH) are studied with real-time dynamical simulations including the motion of the entire solvated enzyme. The electronic quantum effects are incorporated with an empirical valence bond potential, and the nuclear quantum effects of the transferring hydrogen are incorporated with a mixed quantum/classical molecular dynamics method in which the transferring hydrogen nucleus is represented by a three-dimensional vibrational wave function. The equilibrium transition state theory rate constants are determined from the adiabatic quantum free energy profiles, which include the free energy of the zero point motion for the transferring nucleus. The nonequilibrium dynamical effects are determined by calculating the transmission coefficients with a reactive flux scheme based on real-time molecular dynamics with quantum transitions (MDQT) surface hopping trajectories. The values of nearly unity for these transmission coefficients imply that nonequilibrium dynamical effects such as barrier recrossings are not dominant for this reaction. The calculated deuterium and tritium kinetic isotope effects for the overall rate agree with experimental results. These simulations elucidate the fundamental nature of the nuclear quantum effects and provide evidence of hydrogen tunneling in the direction along the donor-acceptor axis. An analysis of the geometrical parameters during the equilibrium and nonequilibrium simulations provides insight into the relation between specific enzyme motions and enzyme activity. The donor-acceptor distance, the catalytic zinc-substrate oxygen distance, and the coenzyme (NAD(+)/NADH) ring angles are found to strongly impact the activation free energy barrier, while the donor-acceptor distance and one of the coenzyme ring angles are found to be correlated to the degree of barrier recrossing. The distance between VAL-203 and the reactive center is found to significantly impact the activation free energy but not the degree of barrier recrossing. This result indicates that the experimentally observed effect of mutating VAL-203 on the enzyme activity is due to the alteration of the equilibrium free energy difference between the transition state and the reactant rather than nonequilibrium dynamical factors. The promoting motion of VAL-203 is characterized in terms of steric interactions involving THR-178 and the coenzyme.  相似文献   

3.
A recently introduced computational algorithm to extend time scales of atomically detailed simulations is illustrated. The algorithm, milestoning, is based on partitioning the dynamics to a sequence of trajectories between "milestones" and constructing a non-Markovian model for the motion along a reaction coordinate. The kinetics of a conformational transition in a blocked alanine is computed and shown to be accurate, more efficient than straightforward molecular dynamics by a factor of about 9, and nonexponential. A general scaling argument predicts a linear speedup with the number of milestones for diffusive processes and an exponential speedup for transitions over barriers. The algorithm is also trivial to parallelize. As a side result, milestoning also produces the free energy profile along the reaction coordinate and is able to describe nonequilibrium motions along one (or a few) degrees of freedom.  相似文献   

4.
We suggest and discuss a simple model of an ideal gas under the piston to gain an insight into the workings of the Jarzynski identity connecting the average exponential of the work over the nonequilibrium trajectories with the equilibrium free energy. We show that the identity is valid for our system, due to the very rapid molecules belonging to the tail of the Maxwell distribution. For the most interesting extreme, when the system volume is large, while the piston is moving with great speed (compared to thermal velocity) for a very short time, the necessary number of independent experimental runs to obtain a reasonable approximation for the free energy from averaging the nonequilibrium work grows exponentially with the system size.  相似文献   

5.
Decarboxylation of mandelylthiamin in aqueous solution is analyzed by means of quantum mechanics/molecular mechanics simulations including solvent effects. The free energy profile for the decarboxylation reaction was traced, assuming equilibrium solvation, while reaction trajectories allowed us to incorporate nonequilibrium effects due to the solvent degrees of freedom as well as to evaluate the rate of the diffusion process in competition with the backward reaction. Our calculations that reproduce the experimental rate constant show that decarboxylation takes place with a non-negligible free energy barrier for the backward reaction and that diffusion of carbon dioxide is very fast compared to the chemical step. According to these findings catalysts would not act by preventing the backward reaction.  相似文献   

6.
Jarzynski's relation and the fluctuation theorem have established important connections between nonequilibrium statistical mechanics and equilibrium thermodynamics. In particular, an exact relationship between the equilibrium free energy and the nonequilibrium work is useful for computer simulations. In this paper, we exploit the fact that the free energy is a state function, independent of the pathway taken to change the equilibrium ensemble. We show that a generalized expression is advantageous for computer simulations of free energy differences. Several methods based on this idea are proposed. The accuracy and efficiency of the proposed methods are evaluated with a model problem.  相似文献   

7.
The equilibrium free energy difference between two long-lived molecular species or "conformational states" of a protein (or any other molecule) can in principle be estimated by measuring the work needed to shuttle the system between them, independent of the irreversibility of the process. This is the meaning of the Jarzynski equality (JE), which we test in this paper by performing simulations that unfold a protein by pulling two atoms apart. Pulling is performed fast relative to the relaxation time of the molecule and is thus far from equilibrium. Choosing a simple protein model for which we can independently compute its equilibrium properties, we show that the free energy can be exactly and effectively estimated from nonequilibrium simulations. To do so, one must carefully and correctly determine the ensemble of states that are pulled, which is more important the farther from equilibrium one performs simulations; this highlights a potential problem in using the JE to extract the free energy from forced unfolding experiments. The results presented here also demonstrate that the free energy difference between the native and denatured states of a protein measured in solution is not always equal to the free energy profile that can be estimated from forced unfolding simulations (or experiments) using the JE.  相似文献   

8.
Recently, accelerated molecular dynamics (AMD) technique was generalized to realize essential energy space random walks so that further sampling enhancement and effective localized enhanced sampling could be achieved. This method is especially meaningful when essential coordinates of the target events are not priori known; moreover, the energy space metadynamics method was also introduced so that biasing free energy functions can be robustly generated. Despite the promising features of this method, due to the nonequilibrium nature of the metadynamics recursion, it is challenging to rigorously use the data obtained at the recursion stage to perform equilibrium analysis, such as free energy surface mapping; therefore, a large amount of data ought to be wasted. To resolve such problem so as to further improve simulation convergence, as promised in our original paper, we are reporting an alternate approach: the adaptive-length self-healing (ALSH) strategy for AMD simulations; this development is based on a recent self-healing umbrella sampling method. Here, the unit simulation length for each self-healing recursion is increasingly updated based on the Wang-Landau flattening judgment. When the unit simulation length for each update is long enough, all the following unit simulations naturally run into the equilibrium regime. Thereafter, these unit simulations can serve for the dual purposes of recursion and equilibrium analysis. As demonstrated in our model studies, by applying ALSH, both fast recursion and short nonequilibrium data waste can be compromised. As a result, combining all the data obtained from all the unit simulations that are in the equilibrium regime via the weighted histogram analysis method, efficient convergence can be robustly ensured, especially for the purpose of free energy surface mapping.  相似文献   

9.
We derive expressions for the equilibrium entropy and energy changes in the context of the Jarzynski equality relating nonequilibrium work to equilibrium free energy. The derivation is based on a stochastic path integral technique that reweights paths at different temperatures. Stochastic dynamics generated by either a Langevin equation or a Metropolis Monte Carlo scheme are treated. The approach enables the entropy-energy decomposition from trajectories evolving at a single-temperature and does not require simulations or measurements at two or more temperatures. Both finite difference and analytical formulae are derived. Testing is performed on a prototypical model system and the method is compared with existing thermodynamic integration and thermodynamic perturbation approaches for entropy-energy decomposition. The new formulae are also put in the context of more general, dynamics-independent expressions that derive from either a fluctuation theorem or the Feynman-Kac theorem.  相似文献   

10.
We present the results of computer simulations giving a kinetic insight into the liquid-to-solid transition of a homopolymer chain with short-range interactions. By calculating the absolute rates in each direction of the transition, using molecular dynamics employing the forward flux sampling scheme, we provide the phase diagram based on purely kinetic data, and compare it with the results from Monte Carlo simulations. Additionally, we present and discuss a remarkably simple and general relation between the polymer topology and the folding pathway, and show that the eigenvalue spectrum of a matrix defined by non-bonded contacts (the Laplacian matrix) provides an insight into the nonequilibrium ensembles of these trajectories. In particular, the Laplacian matrix seems to identify a large fraction of configurations on the folding pathway at the free energy maximum that have a very low probability of reaching the crystallized state. This implies that the eigenvalues of this matrix may be suitable additional reaction coordinates to describe the folding transition of chain molecules.  相似文献   

11.
The nonequilibrium fluctuation theorems have paved the way for estimating equilibrium thermodynamic properties, such as free energy differences, using trajectories from driven nonequilibrium processes. While many statistical estimators may be derived from these identities, some are more efficient than others. It has recently been suggested that trajectories sampled using a particular time-dependent protocol for perturbing the Hamiltonian may be analyzed with another one. Choosing an analysis protocol based on the nonequilibrium density was empirically demonstrated to reduce the variance and bias of free energy estimates. Here, we present an alternate mathematical formalism for protocol postprocessing based on the Feynmac-Kac theorem. The estimator that results from this formalism is demonstrated on a few low-dimensional model systems. It is found to have reduced bias compared to both the standard form of Jarzynski's equality and the previous protocol postprocessing formalism.  相似文献   

12.
We propose a new adaptive sampling approach to determine free energy profiles with molecular dynamics simulations, which is called as "repository based adaptive umbrella sampling" (RBAUS). Its main idea is that a sampling repository is continuously updated based on the latest simulation data, and the accumulated knowledge and sampling history are then employed to determine whether and how to update the biasing umbrella potential for subsequent simulations. In comparison with other adaptive methods, a unique and attractive feature of the RBAUS approach is that the frequency for updating the biasing potential depends on the sampling history and is adaptively determined on the fly, which makes it possible to smoothly bridge nonequilibrium and quasiequilibrium simulations. The RBAUS method is first tested by simulations on two simple systems: a double well model system with a variety of barriers and the dissociation of a NaCl molecule in water. Its efficiency and applicability are further illustrated in ab initio quantum mechanics/molecular mechanics molecular dynamics simulations of a methyl-transfer reaction in aqueous solution.  相似文献   

13.
The fifth-order two-dimensional (2D) Raman signals have been calculated from the equilibrium and nonequilibrium (finite field) molecular dynamics simulations. The equilibrium method evaluates response functions with equilibrium trajectories, while the nonequilibrium method calculates a molecular polarizability from nonequilibrium trajectories for different pulse configurations and sequences. In this paper, we introduce an efficient algorithm which hybridizes the existing two methods to avoid the time-consuming calculations of the stability matrices which are inherent in the equilibrium method. Using nonequilibrium trajectories for a single laser excitation, we are able to dramatically simplify the sampling process. With this approach, the 2D Raman signals for liquid xenon, carbon disulfide, water, acetonitrile, and formamide are calculated and discussed. Intensities of 2D Raman signals are also estimated and the peak strength of formamide is found to be only five times smaller than that of carbon disulfide.  相似文献   

14.
Recent developments in statistical mechanics have allowed the estimation of equilibrium free energies from the statistics of work measurements during processes that drive the system out of equilibrium. Here a different class of processes is considered, wherein the system is prepared and released from a nonequilibrium state, and no external work is involved during its observation. For such "clamp-and-release" processes, a simple strategy for the estimation of equilibrium free energies is offered. The method is illustrated with numerical simulations and analyzed in the context of tethered single-molecule experiments.  相似文献   

15.
16.
An efficient method for the calculation of minimum free energy pathways and free energy profiles for conformational transitions is presented. Short restricted perturbation-targeted molecular dynamics trajectories are used to generate an approximate free energy surface. Approximate reaction pathways for the conformational change are constructed from one-dimensional line segments on this surface using a Monte Carlo optimization. Accurate free energy profiles are then determined along the pathways by means of one-dimensional adaptive umbrella sampling simulations. The method is illustrated by its application to the alanine "dipeptide." Due to the low computational cost and memory demands, the method is expected to be useful for the treatment of large biomolecular systems.  相似文献   

17.
We use Bayesian inference to derive the rate coefficients of a coarse master equation from molecular dynamics simulations. Results from multiple short simulation trajectories are used to estimate propagators. A likelihood function constructed as a product of the propagators provides a posterior distribution of the free coefficients in the rate matrix determining the Markovian master equation. Extensions to non-Markovian dynamics are discussed, using the trajectory "paths" as observations. The Markovian approach is illustrated for the filling and emptying transitions of short carbon nanotubes dissolved in water. We show that accurate thermodynamic and kinetic properties, such as free energy surfaces and kinetic rate coefficients, can be computed from coarse master equations obtained through Bayesian inference.  相似文献   

18.
We investigate the dynamics of colloidal crystallization in a 32-particle system at a fixed value of interparticle depletion attraction that produces coexisting fluid and solid phases. Free energy landscapes (FELs) and diffusivity landscapes (DLs) are obtained as coefficients of 1D Smoluchowski equations using as order parameters either the radius of gyration or the average crystallinity. FELs and DLs are estimated by fitting the Smoluchowski equations to Brownian dynamics (BD) simulations using either linear fits to locally initiated trajectories or global fits to unbiased trajectories using Bayesian inference. The resulting FELs are compared to Monte Carlo Umbrella Sampling results. The accuracy of the FELs and DLs for modeling colloidal crystallization dynamics is evaluated by comparing mean first-passage times from BD simulations with analytical predictions using the FEL and DL models. While the 1D models accurately capture dynamics near the free energy minimum fluid and crystal configurations, predictions near the transition region are not quantitatively accurate. A preliminary investigation of ensemble averaged 2D order parameter trajectories suggests that 2D models are required to capture crystallization dynamics in the transition region.  相似文献   

19.
In this paper, we analyze the energetic and conformational preferences involved in the chiral discrimination of ibuprofen (Ibu) isomers by beta-cyclodextrin (β-CD) when forming inclusion complexes in water. This study was performed by means of atomistic molecular mechanics simulations upon four different penetration modes of the guest, and a structural 2D NMR experiment. The trajectories of these simulations were treated with the MM/GBSA method in order to obtain the relative weights of the different free energy components. The resulting values of the free energy of binding and other geometrical features indicate that this chiral selectivity is influenced by a preferred penetration mode involving the S-(+)-Ibu isomer. The calculated ΔΔG of binding is in good agreement with published experiments.  相似文献   

20.
The generalized Crooks theorem (GCT) for deterministic non-Hamiltonian molecular dynamics simulations [Phys. Rev. E 75, 050101 (2007)] connects the probabilities of nonequilibrium realizations switching the system between two thermodynamic states, to the partition functions of these states. In comparison to the "classical" Crooks nonequilibrium work theorem [J. Stat. Phys. 90, 1481 (1998)], which deals with realizations involving only mechanical work, the GCT also accounts for additional work resulting from changes of the intensive and extensive thermodynamic variables of the system. In this article we present a numerical verification of the GCT using a Lennard-Jones fluid model where two particles are subject to a time-dependent external potential. Moreover, in order to switch the system between different thermodynamic states, the temperature and the pressure (or volume), which are controlled through the Martyna-Tobias-Klein equations of motion [J. Chem. Phys. 101, 4177 (1994)], are also varied externally. The free energy difference between states characterized by different distances of the target particles is evaluated using both a standard methodology (pair radial distribution functions) and the GCT. In order to exploit the various options provided by the GCT approach, i.e., the possibility of temperature/pressure/volume changes during the realizations, the free energy difference is recovered via arbitrary thermodynamic cycles. In all tests, the GCT is quantitatively verified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号