首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了分析台风影响下浙江沿海风和浪的演变特点,利用浙江省海洋浮标站监测数据和欧洲中期天气预报中心第五代全球气候大气再分析数据(European Centre for Medium-Range Weather Forecasts Reanalysis v5,ERA5),选取2010年以来严重影响浙江的7次台风个例,对台风作用下浙江沿海海面风和浪的演变特点进行分析。结果表明:在台风影响过程中,海浪波型多数呈现混合浪-风浪-混合浪的演变规律;涌浪波型的出现与台风强度及其与浮标站的距离和方位有关,也与海洋潮汐现象紧密相关。台风影响期间,浙江沿海浪高的变化受风速和风向共同作用影响。在风向不变的情况下,持续风速增大对浪高的增大有明显作用;风向的变化也会对浪高变化产生影响,向岸风和离岸风的转变会造成浪高出现剧烈变化。ERA5 再分析资料有效波高在台风浪较大时会呈现偏小的趋势,分析订正后的ERA5 有效波高发现,台风浪有效波高大值区与台风中心位置相关。研究结果可为严重影响浙江沿海的台风浪预报服务提供参考。  相似文献   

2.
张扬  李宏  丁扬  余为  许建平 《海洋学报》2019,41(5):12-22
本文应用一个经验证的全球尺度FVCOM海浪模型,模拟了2012年全球海洋海浪场的分布和演变,分析了海表面风场、海浪场与混合层深度的全球尺度分布及相关性。综合观测资料和模型结果显示,海表面10 m风速、有效波高与混合层深度的全球尺度分布随季节发生显著的变化,并且其分布态势存在明显的相似性。从相关系数的全球分布来看,海表面10 m风速在印度洋低纬度海区(纬度0°~20°)与混合层深度间有较强的相关性,相关系数大于0.5;有效波高与混合层深度间相关系数大于0.5的网格分布在北半球高纬度海区和印度洋北部。谱峰周期与混合层深度间在部分海区存在负相关关系,这些网格主要分布在低纬度海区(纬度0°~30°)。统计结果显示,有效波高、海表面10 m风速和谱峰周期与混合层深度间的平均相关系数分别为0.31、0.25和0.12。综合以上结果表明,有效波高较谱峰周期能更有效地表征波浪能对海洋上层混合的影响;相比于海表面风速,有效波高与混合层深度间存在更强的相关关系,其变化对海洋上层混合有更显著的影响。  相似文献   

3.
Significant wave height estimates are necessary for many applications in coastal and offshore engineering and therefore various estimation models are proposed in the literature for this purpose. Unfortunately, most of these models provide simultaneous wave height estimations from wind speed measurements. However, in practical studies, the prediction of significant wave height is necessary from previous time interval measurements. This paper presents a dynamic significant wave height prediction procedure based on the perceptron Kalman filtering concepts. Past measurements of significant wave height and wind speed variables are used for training the adaptive model and it is then employed to predict the significant wave height amounts for future time intervals from the wind speed measurements only. The verification of the proposed model is achieved through the dynamic significant wave height and wind speed time series plots, observed versus predicted values scatter diagram and the classical linear significant wave height models. The application of the proposed model is presented for a station in USA.  相似文献   

4.
世界大洋长历时局地风速和有效波高的统计与分析   总被引:1,自引:0,他引:1  
本文基于美国海军测地卫星高度计提供的全球范围长历时局地平均风速和有效波高资料进行统计分析,结果表明,世界大洋长历时局地平均风速和有效波高有明显的相关性,其散布点系统地位于Wilson提出的深水充分成长风浪平均风速和有效波高经验曲线之上;并从能量叠加平衡方程,近似定量估计出大洋中长历时涌浪有效波高与局地平均风速的关系。  相似文献   

5.
Measurements from the GEOSAT, ERS-1 and 2 and Topex/Poseidon satellites have now accumulated to over 15 years of global ocean wave and wind data. Extraction of wave height, wind speed and wave period from the satellite altimeters and directional wave spectra from the synthetic aperture radars are reviewed along with recent validation and calibration efforts. Applications of the data to a variety of problems illustrate the potential of satellite wave measurements.  相似文献   

6.
本文利用第三代海浪模式(WAVEWATCH III)分析了2002-2011年太平洋风速和海浪场的时空变化特征。首先,使用浮标观测数据对模式模拟的有效波高结果进行验证。结果表明模式可以有效地后报太平洋的有效波高。模式偏差较大的区域为中低纬度地区。随后将太平洋分为多个子区域,分别讨论了其风速和有效波高的时空变化特征。多年平均太平洋风速和有效波高存在类似的纬向分布特征,各子区域之间风速和有效波高的季节变化存在差别。模式刻画的太平洋有效波高年际变化最大的区域为南半球中高纬区域。进一步,我们研究了波浪能量的输入与耗散。相应的源函数项的各区域平均值显示了量化的表面波的变化。最后,对日平均的风速与有效波高值进行功率谱分析寻找序列的显著周期。结果表明有效波高时间变化对应的频谱和风速谱具有一定的差异。  相似文献   

7.
Wind speed and wave height measured by satellite altimeters represent a good data source to the study of global and regional wind and wave conditions. In this paper, the TOPEX altimeter wind and wave measurements in the Yellow and East China Seas are analyzed. The results provide a glimpse on the statistical properties and the spatial distributions of the regional wind and wave conditions. These data are excellent for use in the validation and verification of numerical simulations on global and regional scales. The altimeter measurements are compared with model output of temporal statistics and spatial distributions. The results show that the model simulations are in good agreement with TOPEX measurements in terms of the local mean and standard deviation of the variables (wave height and wind speed). For the comparison of spatial distributions, the quality of agreement between numerical simulations and altimeter measurements varies significantly from cycle to cycle of altimeter passes. In many cases, trends in the spatial distributions of wave heights and wind speeds between simulations and measurements are opposite. The statistics of biases, rms differences, linear regression coefficients and correlation coefficients are presented. A rather large percentage (∼50%) of cases show poor agreement based on a combination of low correlation, large rms difference or bias, and poor regression coefficient. There are indications that wave age is a factor affecting the performance of wave modeling skills. Generally speaking, the error statistics in the wave field is correlated to the corresponding error statistics in the wind field under the condition of active wind-wave generation. The error statistics between the wave field and the wind field become less correlated for large wave ages. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Long-Term Validation of Wave Height Measurements from Altimeters   总被引:1,自引:0,他引:1  
Since July 1991, six altimeter missions have been launched successfully, and they have provided almost continuous wave height measurements for more than 12 years. Long-term series of wave height measurements are of major interest for climatology and oceanic wave modeling. Before using such data, the measurements have to be validated, and the homogeneity of the data from various satellites has to be checked. Significant wave height measurements from ERS, TOPEX/Poseidon, GEOSAT Follow-on, Jason-1 and ENVISAT altimeters are validated using cross-altimeter and buoy comparisons. Emphasis is put on the two recent missions Jason-1 and ENVISAT. Corrections for biases and trends are proposed for the six altimeters, allowing the generation of consistent and homogeneous data. Tests of these corrections are performed over global ocean simple statistics.  相似文献   

9.
Since July 1991, six altimeter missions have been launched successfully, and they have provided almost continuous wave height measurements for more than 12 years. Long-term series of wave height measurements are of major interest for climatology and oceanic wave modeling. Before using such data, the measurements have to be validated, and the homogeneity of the data from various satellites has to be checked. Significant wave height measurements from ERS, TOPEX/Poseidon, GEOSAT Follow-on, Jason-1 and ENVISAT altimeters are validated using cross-altimeter and buoy comparisons. Emphasis is put on the two recent missions Jason-1 and ENVISAT. Corrections for biases and trends are proposed for the six altimeters, allowing the generation of consistent and homogeneous data. Tests of these corrections are performed over global ocean simple statistics.  相似文献   

10.
The paper discusses an artificial neural network (ANN) approach to project information on wind speed and waves collected by the TOPEX satellite at deeper locations to a specified coastal site. The observations of significant wave heights, average wave period and wind speed at a number of locations over a satellite track parallel to a coastline are used to estimate corresponding values of these three parameters at the coastal site of interest. A combined network involving an input and output of all the three parameters, viz., wave height, period and wind speed instead of separate networks for each one of these variables was found to be necessary in order to train the network with sufficient flexibility. It was also found that network training based on statistical homogeneity of data sets is essential to obtain accurate results. The problem of modeling wind speeds that are always associated with very high variations in their magnitudes was tackled in this study by imparting training in an innovated manner.  相似文献   

11.
Hurricane generated waves as observed by satellite   总被引:1,自引:0,他引:1  
  相似文献   

12.
Utilizing the 45 a European Centre for Medium-Range Weather Forecasts(ECMWF)reanalysis wave data(ERA-40),the long-term trend of the sea surface wind speed and(wind wave,swell,mixed wave)wave height in the global ocean at grid point 1.5×1.5 during the last 44 a is analyzed.It is discovered that a majority of global ocean swell wave height exhibits a significant linear increasing trend(2–8 cm/decade),the distribution of annual linear trend of the significant wave height(SWH)has good consistency with that of the swell wave height.The sea surface wind speed shows an annually linear increasing trend mainly concentrated in the most waters of Southern Hemisphere westerlies,high latitude of the North Pacific,Indian Ocean north of 30 S,the waters near the western equatorial Pacific and low latitudes of the Atlantic waters,and the annually linear decreasing mainly in central and eastern equator of the Pacific,Juan.Fernandez Archipelago,the waters near South Georgia Island in the Atlantic waters.The linear variational distribution characteristic of the wind wave height is similar to that of the sea surface wind speed.Another find is that the swell is dominant in the mixed wave,the swell index in the central ocean is generally greater than that in the offshore,and the swell index in the eastern ocean coast is greater than that in the western ocean inshore,and in year-round hemisphere westerlies the swell index is relatively low.  相似文献   

13.
本文基于唐山近海海域1#、2#浮标2017年4月至11 月实时海浪观测数据及部分风速风向数据, 对唐山近海海域波浪有效波高、有效波向、有效波周期等波参数特征进行了统计分析, 并利用origin 软件对波参数与风速、风向相关性进行了研究。研究结果表明: 1#、2# 浮标海域常浪向为SSW、SW、SSE, 常浪向有效波高均以0.2 ~ 0.4 m 小浪及3 ~ 4 s 短周期为主,有效波高1 m 以上较大波浪极少出现; 该海域波浪以风浪为主, 波浪破碎速度较快, 有效波高与风速相关性较强, 相关系数r 为0.71, 风向与波向、有效波高与周期基本无相关性, 该研究资料可为海上活动及防灾减灾提供技术依据。  相似文献   

14.
西太平洋8708号台风海面风、浪结构及其关系的遥感研究   总被引:3,自引:0,他引:3  
本文以Geosat卫星高度计1987年8月11日在西太平洋海域上的-上升轨道测得的风、浪资料为基础,统计分析了8708号台风影响下的海面风速和海浪特征.结果显示,此次台风影响下的海面风速和海浪波高的空间分布具有相对台风中心近似对称的结构特征,但在台风内区,台风移动方向的右方风速较左方风速增加较快,同时在台风外围,右方风速较左方风速衰减也较快;有效波高没有明显的内、外区结构,且左、右方波高随距离变化也呈不同的衰减率;风速与有效波高的关系在台风中心左右也呈现明显的不同;本文给出了台风的风速及波高随相对台风中心距离变化的经验关系式,以及合风风速与波高的经验关系式等.  相似文献   

15.
A new database of ocean wave parameters has been created based on satellite altimetry observations. The basis was data from the European Space Agency project GlobWave (www.globwave.org), which was transformed to suit upcoming requirements for global wave analysis. The new database contains additional wave characteristics (altimetry wind speed estimated using different parametric models, steepness, period, and some quality control parameters). It provides up-to-date tools for mass data preprocessing. The new database makes it possible to optimize wave field diagnostics on regional and global scales. Using the Envisat and Jason-1 satellite missions as an the example, we demonstrate the specific features of using the initial GlobalWave data set and the modified database.  相似文献   

16.
This study sets out to define the basic forms in which wind speed and wave height persistence statistics may be defined for offshore engineering applications, and describes the development of a mathematical persistence model.The model incorporates some of the principles laid down by other workers, but it is fundamentally based on a new concept for parameterising persistence statistics, linking wind speed and sea state percentage probability of exceedance with the persistence average duration.North Sea measured wind and wave data have been used to calibrate and test the model. During the course of these test runs it proved necessary to fine tune the basic Weibull equation of the model, but following these adjustments the model runs were found to correlate well with the measured data.It is concluded that the model may be used to predict wind speed and wave height persistence statistics with acceptable accuracy for preliminary stage oil industry planning purposes and that the calibrated model has particular application for those areas where little measured data are currently available.  相似文献   

17.
全球有效波高和风速的时空变化及相关关系研究   总被引:2,自引:1,他引:1  
The climatology of significant wave height(SWH) and sea surface wind speed are matters of concern in the fields of both meteorology and oceanography because they are very important parameters for planning offshore structures and ship routings. The TOPEX/Poseidon altimeter, which collected data for about 13 years from September 1992 to October 2005, has measured SWHs and surface wind speeds over most of the world's oceans. In this paper, a study of the global spatiotemporal distributions and variations of SWH and sea surface wind speed was conducted using the TOPEX/Poseidon altimeter data set. The range and characteristics of the variations were analyzed quantitatively for the Pacific, Atlantic, and Indian oceans. Areas of rough waves and strong sea surface winds were localized precisely, and the correlation between SWH and sea surface wind speed analyzed.  相似文献   

18.
Results of comparison exercises carried out between the state-of-the-art TOPEX/POSEIDON altimeter-derived ocean surface wind speed and ocean wave parameters (significant wave height and wave period) and those measured by a set of ocean data buoys in the North Indian Ocean are presented in this article. Altimeter-derived significant wave height values exhibited rms deviation as small as ±0.3 m, and surface wind speed of ±1.6 m/s. These results are found consistent with those found for the Pacific Ocean. For estimation of ocean wave period, the spectral moments-based semiempirical approach, earlier applied on GEOSAT data, was extended to TOPEX/POSEIDON. For this purpose, distributions of first four years of TOPEX/POSEIDON altimeter data and climatology over the North Indian Ocean were analyzed and a new set of coefficients generated for estimation of wave period. It is shown that wave periods thus estimated from TOPEX/POSEIDON data (for the subsequent two years), when compared with independent data set of ocean data buoys deployed in the North Indian Ocean, exhibit improved accuracy (rms ~ ±1.4 nos) over those determined earlier with GEOSAT data.  相似文献   

19.
Results of comparison exercises carried out between the state-of-the-art TOPEX/POSEIDON altimeter-derived ocean surface wind speed and ocean wave parameters (significant wave height and wave period) and those measured by a set of ocean data buoys in the North Indian Ocean are presented in this article. Altimeter-derived significant wave height values exhibited rms deviation as small as - 0.3 m, and surface wind speed of - 1.6 m/s. These results are found consistent with those found for the Pacific Ocean. For estimation of ocean wave period, the spectral moments-based semiempirical approach, earlier applied on GEOSAT data, was extended to TOPEX/POSEIDON. For this purpose, distributions of first four years of TOPEX/POSEIDON altimeter data and climatology over the North Indian Ocean were analyzed and a new set of coefficients generated for estimation of wave period. It is shown that wave periods thus estimated from TOPEX/POSEIDON data (for the subsequent two years), when compared with independent data set of ocean data buoys deployed in the North Indian Ocean, exhibit improved accuracy (rms ~ - 1.4 nos) over those determined earlier with GEOSAT data.  相似文献   

20.
海浪对ASCAT散射计反演风场的影响研究   总被引:1,自引:1,他引:0  
To improve retrieval accuracy, this paper studies wave effects on retrieved wind field from a scatterometer. First, the advanced scatterometer(ASCAT) data and buoy data of the National Data Buoy Center(NDBC) are collocated. Buoy wind speed is converted into neutral wind at 10 m height. Then, ASCAT data are compared with the buoy data for the wind speed and direction. Subsequently, the errors between the ASCAT and the buoy wind as a function of each wave parameter are used to analyze the wave effects. Wave parameters include dominant wave period(dpd), significant wave height(swh), average wave period(apd) and the angle between the dominant wave direction(dwd) and the wind direction. Collocated data are divided into sub-datasets according to the different intervals of each wave parameter. A root mean square error(RMSE) for the wind speed and a mean absolute error(MAE) for the wind direction are calculated from the sub-datasets, which are considered as the function of wave parameters. Finally, optimal wave conditions on wind retrieved from the ASCAT are determined based on the error analyses. The results show the ocean wave parameters have correlative relationships with the RMSE of the retrieved wind speed and the MAE of the retrieved wind direction. The optimal wave conditions are presented in terms of dpd, swh, apd and angle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号