首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This is well known that the selectivity and sensitivity of tin dioxide (SnO2) thin film sensors for the detection of low concentration of volatile sulfides such as H2S in air can be improved by small amount of Ag additives. In this paper we present the results of comparative X-ray photoelectron spectroscopy (XPS), thermal desorption spectroscopy (TDS), and atomic force microscopy (AFM) studies of the surface chemistry and morphology of SnO2 nanolayers obtained by laser-enhanced chemical vapor deposition (L-CVD) additionally covered with 1 monolayer (ML) of Ag. For as deposited SnO2 nanolayers, a mixture of tin oxide (SnO) and tin dioxide (SnO2) with the [C]/[Sn] ratio of approximately 1.3 was observed. After dry air exposure, the [O]/[Sn] ratio slightly increased to approximately 1.55. Moreover, an evident increasing of C contamination was observed with [C]/[Sn] ratio of approximately 3.5. After TDS experiment, the [O]/[Sn] ratio goes back to 1.3, whereas C contamination evidently decreases (by factor of 3). Simultaneously, the Ag concentration after air exposure and TDS experiment subsequently decreased (finally by factor of approximately 2), which was caused by the diffusion of Ag atoms into the subsurface layers related to the grain-type surface morphology of Ag-covered L-CVD SnO2 nanolayers, as confirmed by XPS ion depth profiling studies. The variation of surface chemistry of the Ag-covered L-CVD SnO2 after air exposure observed by XPS was in a good correlation with the desorption of residual gases from these nanolayers observed in TDS experiments.  相似文献   

2.
The field emission properties of SnO2 nanowires fabricated by chemical vapor deposition with metallic catalyst-assistance were investigated. For the as-fabricated SnO2 nanowires, the turn-on and threshold field were 4.03 and 5.4 V/μm, respectively. Considerable enhancement of field emission of SnO2 nanowires was obtained by a post-annealing process in oxygen at high temperature. When the SnO2 nanowires were post-annealed at 1,000 °C in oxygen, the turn-on and threshold field were decreased to 3.77 and 4.4 V/μm, respectively, and the current density was increased to 6.58 from 0.3 mA/cm2 at the same applied electric field of 5.0 V/μm.  相似文献   

3.
SnO2 nanowire arrays were synthesized by fast heating a mixture of SnO2 and the carbon nanotubes waste soot by high-frequency induction heating. The resultant SnO2 nanowires possess diameters from 50 to 100 nm and lengths up to tens of mircrometers. The field-effect transistors based on single SnO2 nanowire exhibit that as-synthesized nanowires have better transistor performance in terms of transconductance and on/off ratio. This work demonstrates a simple technique to the growth of nanomaterials for application in future nanoelectronic devices.  相似文献   

4.
A series of SnO2-based catalysts modified by Fe, Cr and Mn were prepared by the combination of redox reaction and co-precipitation methods, and applied to catalytic CH4 oxidation. The modified catalysts show generally higher activity than the unmodified SnO2. XRD analysis indicates that Fe, Cr and Mn cations could be incorporated into the lattice of rutile SnO2 (cassiterite) to form solid solution structure. As a result, more reducible and active oxygen species was formed in the samples, as substantiated by the H2-TPR results. Moreover, the specific surface areas of the modified catalysts are much higher than that of pure SnO2 and their crystallite sizes are smaller, indicating they are more resistant to thermal sintering. Indeed, the high specific surface areas and the formation of more active oxygen species in the modified samples are believed to be the predominant reasons leading to their enhanced CH4 oxidation activity. Eventually, it is noted that SnCrO displays not only remarkable CH4 oxidation activity, but also potent resistance to SO2 and water deactivation, which makes it a promising catalyst with the potential to be applied in some real CH4 oxidation processes.  相似文献   

5.
Monocrystal SnO2 and Pd-SnO2 nanoribbons have been successfully synthesized by thermal evaporation, and novel ethanol sensors based on a single Pd-SnO2 nanoribbon and a single SnO2 nanoribbon were fabricated. The sensing properties of SnO2 nanoribbon (SnO2 NB) and Pd-doped SnO2 nanoribbon (Pd-SnO2 NB) sensors were investigated. The results indicated that the SnO2 NB showed a high sensitivity to ethanol and the Pd-SnO2 NB has a much higher sensitivity of 4.3 at 1,000 ppm of ethanol at 230°C, which is the highest sensitivity for a SnO2-based NB. Pd-SnO2 NB can detect ethanol in a wide range of concentration (1 ~ 1,000 ppm) with a relatively quick response (recovery) time of 8 s (9 s) at a temperature from 100°C to 300°C. In the meantime, the sensing capabilities of the Pd-SnO2 NB under 1 ppm of ethanol at 230°C will help to promote the sensitivity of a single nanoribbon sensor. Excellent performances of such a sensor make it a promising candidate for a device design toward ever-shrinking dimensions because a single nanoribbon device is easily integrated in the electronic devices.  相似文献   

6.
Ternary zinc spinel oxides such as Zn2SnO4, ZnAl2O4 and ZnFe2O4 were synthesized and characterized, and their activities in the photodegradation of phenol molecules were investigated. Zn2SnO4, ZnAl2O4 and ZnFe2O4 powders were synthesized by hydrothermal, metal–chitosan complexation and solvothermal routes, respectively. The face-centered cubic spinel structure of each material was confirmed by powder X-ray diffractometry (XRD) and its porous structure by N2 adsorption–desorption isotherms. The characterization of spinels was complemented with Fourier transform infrared spectroscopy (FTIR) and X-rays fluorescence (XRF), revealing the formation of spinel structures with high purity. The photocatalytic activity in the degradation of phenol was observed only with Zn2SnO4 oxide. Mineralization degree of phenol molecules by Zn2SnO4 photocatalyst determined by total organic carbon analysis (TOC) reached 80% at 360 min under sunlight.  相似文献   

7.
Yonghui Li  Jun Li 《Polymer》2011,52(11):2367-6055
Bionanocomposites from biopolymers and inorganic nanoparticles are of great interest for packaging materials due to their enhanced physical, thermal, mechanical, and processing characteristics. In this study, poly(lactic acid) (PLA) nanocomposites with covalent bonding between TiO2 nanowire surface and PLA chains were synthesized through in situ melt polycondensation. Molecular weight, structure, morphology, and thermal properties were characterized. Fourier transform infrared spectroscopy confirmed that PLA chains were covalently grafted onto TiO2 nanowire surface. Transmission electron microscopy images also revealed clearly a third phase presence on the nanowires after the grafting process. Those grafted PLA chains exhibited significantly increased glass transition temperature and thermal stability, compared with pure PLA. The weight-average molecular weight of PLA/2% TiO2 nanowire bulk nanocomposites increased by 66% compared with that of pure PLA. The electron microscopy results showed that strong interfacial interaction and homogeneous distribution were achieved between inorganic nanowires and organic PLA matrix in the bulk nanocomposites. The PLA matrix in bulk nanocomposites exhibited elevated glass transition temperature and decreased crystallization ability as the TiO2 nanowire concentrations were increased from 0 to 2%.  相似文献   

8.
A Güttler  J Küppers 《Carbon》2004,42(2):337-343
The interaction of thermal (2000 K) H and D atoms with glassy carbon (GC) surfaces was investigated in ultrahigh vacuum environment using thermal desorption and reaction kinetics mass spectroscopy. Virgin GC surfaces (not previously subjected to stationary etching by H atoms) exhibit a remarkably low reactivity with respect to adsorption of D. The saturation coverage of D on GC is about a factor of ten smaller than on (0 0 0 1) graphite surfaces (HOPG or natural single crystal). Thermal desorption spectra indicate that D atoms on virgin GC surfaces are adsorbed on distorted graphite basal planes, i.e. the recombinative desorption features of D on GC between 400 and 600 K are broadened as compared to those measured on graphite. Upon heating of D-covered virgin GC surfaces, CD3 surface groups desorb between 500 and 1000 K. Stationary etching of GC by a flux of H atoms is most efficient around 600 K, as was previously observed on other carbon materials, a-C:H thin films and graphite, and as expected from the etching mechanism on C substrates. GC surfaces repeatedly etched by H exhibit an increasing density of C atoms located at edge sites which are capable to adsorb D via formation of spn C-D bonds. D from these sites desorbs recombinatively around 830 K and competitive desorption of C2 deuterocarbons at 780 K occurs. The graphite-like fraction of the surface is unaffected by etching. Abstraction of D on virgin GC by H exhibits the same phenomenology as on graphite: Eley-Rideal mechanism and large abstraction cross-section at small D coverages.  相似文献   

9.
In2O3 nanowires that are 10–50 nm in diameter and several hundred nanometers to micrometers in length have been synthesized by simply annealing Cu–In compound at a relatively low temperature of 550°C. The catalysis of Cu on the growth of In2O3 nanowires is investigated. It is believed that the growth of In2O3 nanowires is via a solid–liquid–solid (SLS) mechanism. Moreover, photoluminescence (PL) peaks of In2O3 nanowires at 412 and 523 nm were observed at room temperature, and their mechanism is also discussed.  相似文献   

10.
Al2O3/ZrO2 one-dimensional nanocomposite structures were synthesised by chemical vapour deposition using Al2O3 nanowires and a ZrCl4 powder source at a temperature of 800?°C and a pressure of 130?Pa. The samples were characterised using X-ray diffraction, the scanning electron microscopy, the transmission electron microscopy, and N2 adsorption–desorption. The results revealed that Al2O3/ZrO2 composite nanowires coated with surface-embedded ZrO2 nanocrystals were formed and that the ZrO2 macroporous and mesoporous structures changed as the ZrO2 deposition time increased. The pore structure and surface area were also elucidated from the N2 adsorption–desorption measurements.  相似文献   

11.
Zinc oxide (ZnO), tin dioxide (SnO2) and compounds ZnO/SnO2 (ZTO) nanostructures have been synthesized successfully from the vapor phase without a catalyst using three different approaches. XRD analyses showed that ZnO with a wurtzite crystal structure, SnO2 with a rutile crystal structure and zinc stannate (ZnSnO3) and/or dizinc stannate (Zn2SnO4) were condensed from the vapor phase when Zn and/or Sn metal powders or their oxides individually or mixed were used as the starting materials. The formation of either zinc or dizinc stannate was controlled by the Zn/Sn ratio and growth technique. SEM and TEM investigations showed that ZnO grew mainly in the form of wires, rods and belts. These are believed to be originated from the common tetrapod structure of ZnO. While SnO2 grew in the form of tetragonal rods with rectangle-like cross section and nanoparticles, ZTO grew in the form of nanobelts. The final length, width and thickness were as low as 40, 10 and 5 nm, respectively. The driving forces for growth of nanowires, nanorods, nanobelts, and nanoparticles were found to be vapor density or supersaturation, temperature, pressure and location of deposition from the source materials. The optical absorbance and photoluminescence spectra of all samples showed excitonic character at room temperature implying good crystal quality, and high photocurrent properties suggesting possible applications in nanoscaled functional devices such as optoelectronics and gas sensors.  相似文献   

12.
In this work we provide direct evidence of hydrogen, carbon and oxygen contamination of poly-crystalline diamond surfaces from ambient conditions and their thermal stability upon vacuum annealing. Deuterated diamond films were exposed to ambient conditions for ~ 3 months and then studied by high-resolution electron energy loss spectroscopy and X-ray photoelectron spectroscopy. Hydrocarbon contaminations posses at least two different binding states which desorb upon annealing to ~ 300 °C and ~ 600 °C. Oxygen contaminations gradually desorb upon annealing to 700–800 °C. It is shown that thermal desorption of contaminations creates sp2 carbon atoms on the diamond film surface.  相似文献   

13.
Electrochemical activities and structural features of Pt/Sn catalysts supported by hydrogen-reduced SnO2 nanowires (SnO2NW) are studied, using cyclic voltammetry, CO stripping voltammetry, scanning electron microscopy, and X-ray diffraction analysis. The SnO2NW supports have been grown on a carbon paper which is commercially available for gas diffusion purposes. Partial reduction of SnO2NW raises the CO tolerance of the Pt/Sn catalyst considerably. The zero-valence tin plays a significant role in lowering the oxidation potential of COads. For a carbon paper electrode loaded with 0.1 mg cm−2 Pt and 0.4 mg cm−2 SnO2NW, a conversion of 54% SnO2NW into Sn metal (0.17 mg cm−2) initiates the COads oxidation reaction at 0.08 V (vs. Ag/AgCl), shifts the peak position by 0.21 V, and maximizes the CO tolerance. Further reduction damages the support structure, reduces the surface area, and deteriorates the catalytic activity. The presence of Sn metal enhances the activities of both methanol and ethanol oxidation, with a more pronounced effect on the oxidation current of ethanol whose optimal value is analogous to those of PtSn/C catalysts reported in literature. In comparison with a commercial PtRu/C catalyst, the optimal Pt/Sn/SnO2NW/CP exhibits a somewhat inferior activity toward methanol, and a superior activity toward ethanol oxidation.  相似文献   

14.
Uniform crystalline MgSn(OH)6 nanocubes were synthesized by a hydrothermal method. The influences of reaction conditions were investigated and the results showed that the solvent constituents significantly affected the shape and size of MgSn(OH)6·SnO2/Mg2SnO4 has been obtained by thermal treatment at 850 °C for 8 h under a nitrogen atmosphere using MgSn(OH)6 as the precursor. The electrochemical tests of SnO2/Mg2SnO4 revealed that SnO2/Mg2SnO4 has a higher capacity and better cyclability compared to pure SnO2 or Mg2SnO4. The electrochemical performance of SnO2/Mg2SnO4 was sensitive to the size of the nanoparticles. The lithium-driven structural and morphological changes of the electrode after cycling were also studied by the ex-situ XRD pattern and TEM tests. This work indicates that SnO2/Mg2SnO4 is a promising anode material candidate for application in Li-ion batteries.  相似文献   

15.
A giant persistent photoconductivity (PPC) phenomenon has been observed in vacuum condition based on a single WO3 nanowire and presents some interesting results in the experiments. With the decay time lasting for 1 × 104 s, no obvious current change can be found in vacuum, and a decreasing current can be only observed in air condition. When the WO3 nanowires were coated with 200 nm SiO2 layer, the photoresponse almost disappeared. And the high bias and high electric field effect could not reduce the current in vacuum condition. These results show that the photoconductivity of WO3 nanowires is mainly related to the oxygen adsorption and desorption, and the semiconductor photoconductivity properties are very weak. The giant PPC effect in vacuum condition was caused by the absence of oxygen molecular. And the thermal effect combining with oxygen re-adsorption can reduce the intensity of PPC.  相似文献   

16.
Polycrystalline films of compositions SnO2, SnO1.93F0.07, 0.93SnO2 · 0.07Sb2O3, and 0.97SnO2 · 0.03CuO, which are of interest for use in gas-sensitive sensors, are prepared by the hydropyrolytic method from metal chlorides on a 22-XC ceramic substrate. The films prepared are studied using mass spectrometry, differential thermal analysis (DTA), and thermogravimetric analysis (TGA) at different temperatures. The results of mass spectrometric investigations demonstrate that, except for water (18 amu), no compounds in the mass range 10–70 amu are desorbed from all the films. The differential thermal and thermogravimetric analyses have revealed that desorption of water molecules from the film surface occurs in the temperature range 50–125°C and the oxidation processes associated with the oxygen chemisorption proceed beginning from a temperature of 125°C.  相似文献   

17.
《Ceramics International》2020,46(10):16321-16327
The thermal coarsening of titanate nanowires was investigated from room temperature to 1000 °C by AFM, SEM, XRD and Raman spectroscopy. Phase transformation kinetics and the external morphology were studied in two configurations: i) as individual and suspended titanate nanowires on SiO2 surface (denoted as 2D geometry); and ii) as large assembly in form of sintered pellets (denoted as 3D geometry). The individual titanates nanowires were coarsened far below the melting temperature (1843 °C) of TiO2 and two temperature dependent geometrical transformation changes were identified. In the first one, the height decreases around 200 °C (~20% shrinkage) due to the dehydration of the layered titanate, followed by the titanate to anatase recrystallization until 600 °C. Interestingly, the surface area of the SiO2 supported high temperature stabilized individual nanowires increased or remained constant, which may be due to the topotactic effects and epitaxial strain stabilization. In the second one, at sintering temperature of 600–1000 °C, an intense nanowire coarsening was observed driven by a surface diffusion mechanism on substrate and a surprising stabilization of the anatase TiO2. In the case of a 3D assembly of the nanowires the densification with significant particle coarsening is accompanied by the phase transformation from anatase to rutile around the known phase transition temperature. These results suggest that the surface area evolution of individual titanium oxide nanowires on SiO2 appreciably differs from the 3D assembly, and the surfaces may induce an extra stabilization effect and deviation from the classical Ostwald ripening surface diffusion model.  相似文献   

18.
A visible light active binary SnO2-TiO2 composite was successfully prepared by a sol-gel method and deposited on Ti sheet as a photoanode to degrade orange II dye. Titanium and SnO2 can promote the development of rutile phase of TiO2 and inhibit the formation of anatase phase of TiO2. Formation of SnO2 crystalline is insignificant even when the calcination temperature increases to 700 °C. Heterogenized interface between SnO2 and TiO2 inhibits growth of TiO2 linkage and leads to the particle-filled surface morphology of SnO2-containing films. The carbonaceous, Ti-O-C bonds and Ti3+ species are likely to account for the photoabsorption and photoelectrocatalytic (PEC) activity under visible light illumination. The electrode with 30% SnO2 exhibits higher photocurrent when compared with those in the region of 0-50%. The 600 °C-calcined SnO2-TiO2 electrode indicates higher activity when compared with those at 400, 500, 700 and 800 °C. PEC degradation of orange II follows the Langmuir-Hinshelwood model and takes place much effectively in a solution of pH 3.0 than those in pH 7.0 and pH 11.0.  相似文献   

19.
A single SnO2 nanobelt was assembled on a pair of Au electrodes by electric-field assembly method. The electronic transport property of single SnO2 nanobelt was studied by conductive atomic force microscopy (C-AFM). Back-to-back Schottky barrier-type junctions were created between AFM tip/SnO2 nanobelt/Au electrode which can be concluded from the I-V curve. The current images of single SnO2 nanobelt nanodevices were also studied by C-AFM techniques, which showed stripes patterns on the nanobelt surface. The current images of the nanobelt devices correlate the microscopy with separate transport properties measurement together.  相似文献   

20.
Single-crystalline Cd(OH)2 or CdO nanowires can be selectively synthesized at 150 °C by a simple hydrothermal method using aqueous Cd(NO3)2 as precursor. The method is biosafe, and compared to the conventional oil-water surfactant approach, more environmental-benign. As revealed by the XRD results, CdO or Cd(OH)2 nanowires can be generated in high purity by varying the time of synthesis. The results of FESEM and HRTEM analysis show that the CdO nanowires are formed in bundles. Over the CdO-nanowire bundles, photoluminescence at ~517 nm attributable to near band-edge emission of CdO was recorded. Based on the experimental results, a possible growth mechanism of the products is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号