首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Measurements of the surface radiation budgets for three surfaces—grass, soil and a cornfield—are used to evaluate the ‘heating coefficient’β, and its componentsβ (=dL /dR n ) andβ (=dL /dR n ). This resolution permits an analysis of the sensitivity of β to surface and atmospheric influences.β is shown, both theoretically and empirically, to be determined by surface properties. For grass and soil, the parameter functions as an index of surface desiccation.β values are large (even under clear conditions) and variable, accounting for part of the variance in β and the anomalously small and negative values reported in the literature.β values for cloudy conditions may be larger or smaller than those for clear skies. It is concluded that, unless a predictive procedure can be developed forβ , the Monteith and Szeicz model is of limited use for the routine estimation of net radiation.  相似文献   

2.
In order to study energy and water cycles in the Huaihe River Basin, micrometeorological measurements were carried out in Shouxian County, Anhui Province, during HUBEX/IOP (May to August 1998 and June to July 1999). The employed techniques included Bowen Ratio-Energy Balance (BREB) and Eddy Covariance (EC) methods. In this paper, the basic characteristics of the energy balance components in the district are analyzed. Furthermore, the results are compared with those from other regions of China.The main results are as follows: (1) There was a consistency between the available energy (Rn-G) and the sum of sensible (H) and latent (E) heat fluxes measured by the EC method (H+E)ec, but Ebr was slightly larger (about 10%) than Eec; (2) Most of the net radiation (Rn) was used to evaporate water from the surface. During HUBEX/IOP in 1998 and 1999, the mean daily amounts of Rn were 13.89 MJ m-2 d-1 and 11.83 MJ m-2 d-1, and the mean Bowen Ratios (β) were 0.14 (over ruderal) and 0.06 (over paddy) respectively; (3) The diurnal variation characteristic of β was larger and unsteady at sunrise and sunset, and smaller and steady during the rest of the daytime. Local advection appeared in the afternoon over paddy areas in 1999; (4) In comparison with the results from other regions of China, the nean β was the lowest (0.06) over paddy areas in the Huaihe River Basin and the highest (0.57) during June-August 1998 in Inner Mongolia grassland. The Bowen Ratio β is mainly related to the soil humidity.  相似文献   

3.
Flow and turbulence above urban terrain is more complex than above rural terrain, due to the different momentum and heat transfer characteristics that are affected by the presence of buildings (e.g. pressure variations around buildings). The applicability of similarity theory (as developed over rural terrain) is tested using observations of flow from a sonic anemometer located at 190.3 m height in London, U.K. using about 6500 h of data. Turbulence statistics—dimensionless wind speed and temperature, standard deviations and correlation coefficients for momentum and heat transfer—were analysed in three ways. First, turbulence statistics were plotted as a function only of a local stability parameter z/Λ (where Λ is the local Obukhov length and z is the height above ground); the σ i /u * values (i = u, v, w) for neutral conditions are 2.3, 1.85 and 1.35 respectively, similar to canonical values. Second, analysis of urban mixed-layer formulations during daytime convective conditions over London was undertaken, showing that atmospheric turbulence at high altitude over large cities might not behave dissimilarly from that over rural terrain. Third, correlation coefficients for heat and momentum were analyzed with respect to local stability. The results give confidence in using the framework of local similarity for turbulence measured over London, and perhaps other cities. However, the following caveats for our data are worth noting: (i) the terrain is reasonably flat, (ii) building heights vary little over a large area, and (iii) the sensor height is above the mean roughness sublayer depth.  相似文献   

4.
Tethered Lifting System (TLS) estimates of the dissipation rate of turbulent kinetic energy (e){(\varepsilon)} are reasonably well correlated with concurrent measurements of vertical velocity variance (sw2){(\sigma_{w}^{2})} obtained from sonic anemometers located on a nearby 60-m tower during the CASES-99 field experiment. Additional results in the first 100 m of the nocturnal stable boundary layer confirm our earlier claim that the presence of weak but persistent background turbulence exists even during the most stable atmospheric conditions, where e{\varepsilon} can exhibit values as low as 10−7 m2 s−3. We also present a set of empirical equations that incorporates TLS measurements of temperature, horizontal wind speed, and e{\varepsilon} to provide a proxy measurement for sw2{\sigma_{w}^{2}} at altitudes higher than tower heights.  相似文献   

5.
Zusammenfassung In der bisher üblichen Betrachtungsweise wird die turbulente Abweichung der Temperatur, bzw. einer anderen transportierten Eigenschaft, von ihrem Mittelwert durch den Mischungsweg gekennzeichnet. Statt dessen wird hier der übergangskoeffizient α der W?rme (bzw. der anderen Eigenschaft) von der Umgebung an das Turbulenzquantum eingeführt, wodurch der Austausch auf die Form gebracht wird (v′=turbulente Zusatzgeschwindigkeit). Als Mittelwert für die Berechnung des horizontalen Gro?austausches wird = 2,4 · 10 sec−1 verwendet. Die neue Berechnungsweise erm?glicht es, die in Monatskarten niedergelegten klimatischen Windbeobachtungen der Weltmeere zur Bestimmung des horizontalen Austausches heranzuziehen. Eine solche Berechnung wird für den Nordatlantik n?rdlich 30° Br. für Januar durchgeführt.
Summary The deviation of some conveyed quality, f. i. temperature, from its mean value, as caused by turbulence, is usually characterized by the “distance of mixture”. It is proposed here to take the transmission coefficient α of heat (or the other quality) between the turbulence quantum and its environment instead of this distance of mixture; the exchange will consequently be given by the equation A = (ϱ/α)·(v2) m (wherev′ is the turbulent velocity vector). For calculations of the horizontal “macro-exchange” we use a mean value of = 2,4 · 10−5 per sec. The new way of computation is allowing to calculate the horizontal exchange from the wind observations on the oceans as published in monthly climate charts. Such a calculation is given here for the northern Atlantic Ocean (north of 30° latitude) and for January.

Résumé Dans les phénomènes de turbulence on caractérise l'écart de la température (ou de toute autre grandeur transportable) avec sa moyenne par le parcours de mélange. Au contraire, on introduit ici le coefficient de transfert de la chaleur (ou de l'autre grandeur) du milieu ambiant au quantum de turbulence, de sorte que l'échange turbulent prend la forme:A=(ϱ/α)·(v2) m ,v′ étant la vitesse supplémentaire due à la turbulence. Pour le calcul de l'échange turbulent horizontal, on utilise la valeur moyenne = 2,4 · · 10−5 sec−1. Ce nouveau mode de calcul permet d'utiliser les observations climatologiques des vents des océans telles qu'elles sont reportés sur les cartes mensuelles pour déterminer l'échange turbulent horizontal. On a appliqué cette méthode au mois de janvier pour l'Atlantique Nord, au Nord du 30ème parallèle.


Mit 2 Textabbildungen.  相似文献   

6.
Dispersion estimates with a Gaussian plume model are often incorrect because of particle settling (β), deposition (γ) or the vertical gradient in diffusivity (K v (z) = K 0μz). These “non-Gaussian” effects, and the interaction between them, can be evaluated with a new Hankel/Fourier method. Due to the deepening of the plume downwind and reduced vertical concentration gradients, these effects become more important at greater distance from the source. They dominate when distance from the source exceeds L β = K 0 U/β 2, L γ  = K 0 U/γ 2 and L μ = K 0 U/μ 2 respectively. In this case, the ratio β/μ plays a central role and when β/μ = 1/2 the effects of settling and K gradient exactly cancel. A general computational method and several specific closed form solutions are given, including a new dispersion relation for the case when all three non-Gaussian effects are strong. A more general result is that surface concentration scales as C(x) ~ γ −2 whenever deposition is strong. Categorization of dispersion problems using β/μ, L γ and L μ is proposed.  相似文献   

7.
In this study, the correlation between simulated and measured radar velocity spectrum width(σv) is investigated. The results show that the dendrites growth zones(DGZs) and needles growth zones(NGZs) mostly contain dendrites(DN) and needles(NE), respectively.Clear σv zones(1.1 < σv(m s–1) < 1.3 and 0.3 < σv(m s–1) < 0.7 for the DGZ and NGZ, respectively) could be identified in the case studies(27 and 28 February 2016) n...  相似文献   

8.
The scaling laws of the vertical (F wc ) and longitudinal (F uc ) velocity-scalar cospectra within the inertial subrange are explored using dimensional arguments and a simplified cospectral budget in the canopy sublayer above three distinct forested ecosystems. The cospectral budget was shown to be consistent with plausible scaling laws originating from dimensional considerations. Using the analytical solution to the novel cospectral budget, it was shown that F wc (k) and F uc (k) are governed by the linear superposition of two terms that scale as k −2/3−α and k β , where k is the wavenumber, −α is the exponent of the velocity spectrum, and β( ≥ 7/3) depends on the ratio of the similarity constants for the pressure-scalar covariance and the flux transport terms. It was also demonstrated that, when the magnitude of the mean scalar concentration gradient is large, the k −2/3−α term dominates the velocity-scalar cospectral budget. For such a case, correcting for biases emerging from high frequency losses in eddy-covariance scalar flux measurements can be readily formulated by using the measured velocity spectral exponent in the inertial subrange.  相似文献   

9.
The characteristics of net radiation (Rn)(0.3--10 μm) in Lhasa and Haibei in the Tibetan Plateau were analyzed based on long-term in-situ measurements of surface radiation data. The monthly average of daily Rn reached a minimum during the winter period followed by an increase until May and then a decline until January. This variation is consistent with solar activity. The annual mean daily total Rn values were 0.92 MJ m-2 d-1 and 0.66 MJ m-2d-1 in Lhasa and Haibei, respectively. A relationship between Rn and broadband solar radiation (Rs) was demonstrated by a good linear correlation at the two sites. Rn can be an accurate estimate from Rs. The estimated Rn values were similar to the observed values, and the relative deviations between the estimates and measurements of Rn were 2.8% and 3.8% in Lhasa and Haibei, respectively. The application of the Rn estimating model to other locations showed that it could provide acceptable estimated Rn values from the Rs data. Furthermore, we analyzed the influence of clouds on Rn by different clear index (Ks), defined as the ratio of Rs to the extraterrestrial solar irradiance on a horizontal surface. The results indicate that more accurate results are associated with increased cloudy conditions. The influence of the albedo was also considered, but its inclusion in the model resulted in only a slight improvement. Because surface albedo is not usually measured, an expression based solely on global solar radiation could be of more extensive use.  相似文献   

10.
A spectral approach is applied to shear-induced turbulence in stratified layers. A system of spectral equations for stationary balance of turbulent energy and temperature variances was deduced in the vicinity of the local shear scale LU = (ε/UZ3)1/2. At wavenumbers between the inertial-convective (k−5/3) and wak turbulence (k−3) subranges, additional narrow spectral intervals—‘production’ subranges—may appear (E k−1, ET k−2). The upper boundary of these subranges is determined as LU, and the lower boundaries as LR (ε/UZN2)1/2(χ/TZ2). It is shown that the scale LU is a unique spectral scale that is uniform up to a constant value for every hydrophysical field. It appears that the spectral scale LU is equivalent to the Thorpe scale LTh for the active turbulence model. Therefore, if turbulent patches are generated in a background of permanent mean shear, a linear relation between temperature and mass diffusivities exists. In spectral terms, the fossil turbulence model corresponds to the regime of the Boldgiano-Obukhov buoyancy subrange (E k−11/5, ET k−7/5). During decay the buoyancy subrange is expanded to lower and higher wavenumbers. At lower wavenumbers the buoyancy subrange is bounded by L** = 3(χ1/2/N1/2TZ), which is equivalent to the Thorpe scale LTh. In such a transition regime only, when the viscous dissipation rate is removed from the set of main turbulence parameters, the Thorpe scale does not correlate with the buoyancy scale LN ε1/2/N3/2 and fossil turbulence is realized. Oceanic turbulence measurements in the equatorial Pacific near Baker Island confirm the main ideas of the active and fossil turbulence models.  相似文献   

11.
Summary ?Evapotranspiration characteristics on the point-scale (several hundred square meters) and the local scale (several square kilometers) are analysed by comparing a deterministic and a statistical – deterministic surface energy balance model. The vegetation surface variability is represented by both the surface heterogeneity and inhomogeneity. Heterogeneity means the mosaic of wet (wif ≠ 0) and dry (1-wif) fractions of vegetation surface, while inhomogeneity addresses small scale variations of soil moisture content. The microscale characteristics of evapotranspiration are considered in terms of analysing evapotranspiration E v versus soil moisture content θ, relative frequency distribution characteristics of E v (θ) and the aggregation algorithms for its estimation. The analyses are performed for loam soil type under different atmospheric forcing conditions. The main result is as follows: For dry vegetation surface (wif = 0), the relationship between the aggregated (θagg) and the area-averaged (θ m ) soil moisture content is nonlinear and depends on both the states of the surface and the atmospheric forcing conditions. In the study, we assumed that there are no advective effects and mesoscale circulation patterns induced by surface discontinuities. Based on this fact it seems unlikely to be able to construct an aggregation algorithm for calculating θagg without inclusion of the atmospheric forcing conditions. This means that it will be difficult to construct a simple formula for calculating area-averaged transpiration, if it is possible at all. Received May 3, 2001; revised May 31, 2002; accepted June 3, 2002  相似文献   

12.
The limited-length-scale k-e{k-\varepsilon} model proposed by Apsley and Castro for the atmospheric boundary layer (Boundary-Layer Meteorol 83(1):75–98, 1997) is revisited with special attention given to its predictions in the constant-stress surface layer. The original model proposes a modification to the length-scale-governing e{\varepsilon} equation that ensures consistency with surface-layer scaling in the limit of small m/ max (where m is the mixing length and max its maximum) and yet imposes a limit on m as m/ max approaches one. However, within the equilibrium surface layer and for moderate values of z/ max, the predicted profiles of velocity, mixing length, and dissipation rate using the Apsley and Castro model do not coincide with analytical solutions. In view of this, a general e{\varepsilon} transport equation is derived herein in terms of an arbitrary desired mixing-length expression that ensures exact agreement with corresponding analytical solutions for both neutral and stable stability. From this result, a new expression for Ce3{C_{\varepsilon3}} can be inferred that shows this coefficient tends to a constant only for limiting values of z/L; and, furthermore, that the values of Ce3{C_{\varepsilon3}} for z/L → 0 and z/L →∞ differ by a factor of exactly two.  相似文献   

13.
A self-consistent two-equation closure treating buoyancy and plant drag effects has been developed, through consideration of the behaviour of the supplementary equation for the length-scale-determining variable in homogeneous turbulent flow. Being consistent with the canonical flow regimes of grid turbulence and wall-bounded flow, the closure is also valid for homogeneous shear flows commonly observed inside tall vegetative canopies and in non-neutral atmospheric conditions. Here we examine the most often used two-equation models, namely and Eω (where is the dissipation rate of turbulent kinetic energy, E, and is the specific dissipation), comparing the suggested buoyancy-modified closure against Monin–Obukhov similarity theory. Assessment of the closure implementing both buoyancy and plant drag together has been done, comparing the results of the two models against each other. It has been found that the Eω model gives a better reproduction of complex atmospheric boundary-layer flows, including less sensitivity to numerical artefacts, than does the model. Re-derivation of the equation from the ω equation, however, leads to the model implementation that produces results identical to the Eω model. Overall, numerical results show that the closure performs well, opening new possibilities for application of such models to tasks related to the atmospheric boundary layer—where it is important to adequately account for the influences of both vegetation and atmospheric stability.  相似文献   

14.
Summary To investigate the effect of atmospheric turbulence on microwave communication links, temperature and water vapor pressure have been measured and radio refractivity has been computed, during different meteorological conditions, in the atmospheric boundary layer of an urban site. The cospectra between temperature (T) and water vapor pressure (e) have been found to be either negative over the whole range of frequencies, or the low-frequency end of the cospectrum is of opposite sign relative to higher frequency end. In both cases cospectra follow a–5/3 law in the inertial subrange, in agreement with the theoretical predictions. The coherence spectra clearly show that the temperature and humidity fluctuations are highly coherent within the inertial subrange under both convective and stable conditions. The relative contribution ofC T 2 ,C eT andC e 2 to the real refractive index structure parameterC n 2 is examined and discussed.With 4 Figures  相似文献   

15.
The effect of topographical slope angle and atmospheric stratification on turbulence intensities in the unstably stratified surface layer have been parameterized using observations obtained from a three-dimensional sonic anemometer installed at 8 m height above the ground at the Seoul National University (SNU) campus site in Korea for the years 1999–2001. Winds obtained from the sonic anemometer are analyzed according to the mean wind direction, since the topographical slope angle changes significantly along the azimuthal direction. The effects of the topographical slope angle and atmospheric stratification on surface-layer turbulence intensity are examined with these data. It is found that both the friction velocity and the variance for each component of wind normalized by the mean wind speed decrease with increase of the topographical slope angle, having a maximum decreasing rate at very unstable stratification. The decreasing rate of the normalized friction velocity (u * /U) is found to be much larger than that of the turbulence intensity of each wind component due to the reduction of wind shear with increase in slope angle under unstable stratification. The decreasing rate of the w component of turbulence intensity (σ w /U) is the smallest over the downslope surface whereas that of the u component (σ u /U) has a minimum over the upslope surface. Consequently, σ w /u * has a maximum increasing rate with increase in slope angle for the downslope wind, whereas σ u /u * has its maximum for the upslope wind. The sloping terrain is found to reduce both the friction velocity and turbulence intensity compared with those on a flat surface. However, the reduction of the friction velocity over the sloping terrain is larger than that of the turbulence intensity, thereby enhancing the turbulence intensity normalized by the friction velocity over sloping terrain compared with that over a flat surface.  相似文献   

16.
Measurements of temperature and velocity microstructure near and downstream of a shallow seamount are used to compare fossil turbulence versus non-fossil turbulence models for the evolution of turbulence microstructure patches in the stratified ocean. According to non-fossil oceanic turbulence models, all overturn length scales LT of the microstructure grow and collapse in constant proportion to each other and to the turbulence energy (Oboukov) scale LO and the inertial buoyancy (Ozmidov) scale of the patches; that is, with LTrms ≈1.2LR and viscous dissipation rate 0*. According to the Gibson fossil turbulence model, all microstructure originates from completely active turbulence with 0 ≈ 3LT2N3(≈ 280*) and LT/√6 ≈ LTrms, but this rapidly decays into a more persistent active-fossil state with 0F ≈ 30vN2, where N is the buoyancy frequency and v is the kinematic viscosity and, without further energy supply, finally reaches a completely fossil turbulence hydrodynamic state of internal wave motions, with F. The last turbulence eddies, with F, vanish at a buoyant-inertial-viscous (fossil Kolmogorov) scale LKF that is much smaller than the remnant overturn scales LT for large 0/F ratios. These density, temperature, and salinity overturns with LT ≈ 0.6 LR0 0.6 LR persist as turbulence fossils (by retaining the memory of o) and collapse very slowly. In the near wake below the summit depth of Ampere seamount, a much larger proportion of completely active turbulence patches was found than is usually found in the ocean interior away from sources. Dissipation rates and turbulence activity coefficients of microstructure patches were found to decrease downstream, suggesting that the active turbulence indicated by the patches with AT 1 was caused by the presence of the seamount as a turbulence source. Therefore, the turbulence and mixing processes of ocean layers far away from turbulence sources probably have been undersampled by microstructure data sets lacking any AT 1 patches. This is because large fractions of the mixing and viscous dissipation of the patches occur in short-lived active turbulence regimes that are too brief to be detected. Consequently, large underestimates of the true space-time average turbulence fluxes and turbulence and scalar dissipation rates may result if non-fossil turbulence models are assumed in ocean microstructure data interpretation.  相似文献   

17.
We report on a novel approach for the Reynolds-averaged Navier-Stokes (RANS) modelling of the neutral atmospheric boundary layer (ABL), using the standard k-ek-{\varepsilon} turbulence model. A new inlet condition for turbulent kinetic energy is analytically derived from the solution of the k-ek-{\varepsilon} model transport equations, resulting in a consistent set of fully developed inlet conditions for the neutral ABL. A modification of the standard k-ek-{\varepsilon} model is also employed to ensure consistency between the inlet conditions and the turbulence model. In particular, the turbulence model constant C μ is generalized as a location-dependent parameter, and a source term is introduced in the transport equation for the turbulent dissipation rate. The application of the proposed methodology to cases involving obstacles in the flow is made possible through the implementation of an algorithm, which automatically switches the turbulence model formulation when going from the region where the ABL is undisturbed to the region directly affected by the building. Finally, the model is completed with a slightly modified version of the Richards and Hoxey rough-wall boundary condition. The methodology is implemented and tested in the commercial code Ansys Fluent 12.1. Results are presented for a neutral boundary layer over flat terrain and for the flow around a single building immersed in an ABL.  相似文献   

18.
Previous measurements of urban energy balances generally have been limited to densely built, central city sites and older suburban locations with mature tree canopies that are higher than the height of the buildings. In contrast, few data are available for the extensive, open vegetated types typical of low-density residential areas that have been newly converted from rural land use. We made direct measurements of surface energy fluxes using the eddy-covariance technique at Greenwood, a recently developed exurban neighbourhood near Kansas City, Missouri, USA, during an intensive field campaign in August 2004. Energy partitioning was dominated by the latent heat flux under both cloudy and near clear-sky conditions. The mean daytime Bowen ratio (β) values were 0.46, 0.48, and 0.47 respectively for the cloudy, near clear-sky and all-sky conditions. Net radiation (R n ) increased rapidly from dawn (−34 and −58W m−2) during the night to reach a maximum (423 and 630W m−2) after midday for cloudy and near clear-sky conditions respectively. Mean daytime values were 253 and 370W m−2, respectively for the cloudy and near clear-sky conditions, while mean daily values were 114 for cloudy and 171W m−2 for near clear-sky conditions, respectively. Midday surface albedo values were 0.25 and 0.24 for the cloudy and near clear-sky conditions, respectively. The site exhibited an angular dependence on the solar elevation angle, in contrast to previous observations over urban and suburban areas, but similar to vegetated surfaces. The latent heat flux (Q E ), sensible heat flux (Q H ), and the residual heat storage ΔQ s terms accounted for between 46–58%, 21–23%, and 18–31% of R n , respectively, for all-sky conditions and time averages. The observed albedo, R n , and Q E values are higher than the values that have been reported for suburban areas with high summer evapotranspiration rates in North America. These results suggest that the rapidly growing residential areas at the exurban fringe of large metropolitan areas have a surface energy balance that is more similar to the rural areas from which they were developed than it is to the older suburbs and city centres that make up the urban fabric to which they are being joined.  相似文献   

19.
 The sensitivity of a coupled model to the oceanic vertical diffusion coefficient κ v is examined. This is compared to the sensitivity of an ocean-only model forced by mixed boundary conditions (BC). The atmospheric component of the coupled model is a moist energy balance model. The ocean component is a 12-level geostrophic model, defined on a midlatitude β-plane. Atmosphere and ocean are coupled through the fluxes of heat and moisture at their interface. The coupled model contains a number of feedback processes which are not represented in the ocean-only model. This results in a temperature and salinity response to κ v which is stronger in the coupled model than in the ocean-only model. On the other hand, there is a weaker response in oceanic processes such as meridional heat transport, deep-water formation at high latitudes, etc. Ocean-only sensitivity experiments were also performed with modified BCs, which parametrise the feedback processes included in the coupled model. These are the modified thermal BC of Rahmstorf and Willebrand and a modified freshwater BC proposed in the present study. Large-scale features of the response in oceanic surface fields are well represented with modified BCs. However, the sensitivity of the deep ocean temperature is only partly captured due to local differences in the surface response. The scaling behavior of the zonal overturning stream function was found to depend on the surface BCs. In contrast to this, the meridional overturning stream function basically scales with κ0.5 v in all sensitivity experiments. Differences in the heat transport response among the experiments are thus primarily related to differences in the temperature response. Received: 28 February 1997/Accepted: 12 September 1997  相似文献   

20.
A large-eddy simulation (LES) model, using the one-equation subgrid-scale (SGS) parametrization, was developed to study the flow and pollutant transport in and above urban street canyons. Three identical two-dimensional (2D) street canyons of unity aspect ratio, each consisting of a ground-level area source of constant pollutant concentration, are evenly aligned in a cross-flow in the streamwise direction x. The flow falls into the skimming flow regime. A larger computational domain is adopted to accurately resolve the turbulence above roof level and its influence on the flow characteristics in the street canyons. The LES calculated statistics of wind and pollutant transports agree well with other field, laboratory and modelling results available in the literature. The maximum wind velocity standard deviations σ i in the streamwise (σ u ), spanwise (σ v ) and vertical (σ w ) directions are located near the roof-level windward corners. Moreover, a second σ w peak is found at z ≈ 1.5h (h is the building height) over the street canyons. Normalizing σ i by the local friction velocity u *, it is found that σ u /u * ≈ 1.8, σ v /u * ≈ 1.3 and σ w /u * ≈ 1.25 exhibiting rather uniform values in the urban roughness sublayer. Quadrant analysis of the vertical momentum flux u′′w′′ shows that, while the inward and outward interactions are small, the sweeps and ejections dominate the momentum transport over the street canyons. In the x direction, the two-point correlations of velocity R v,x and R w,x drop to zero at a separation larger than h but R u,x (= 0.2) persists even at a separation of half the domain size. Partitioning the convective transfer coefficient Ω T of pollutant into its removal and re-entry components, an increasing pollutant re-entrainment from 26.3 to 43.3% in the x direction is revealed, suggesting the impact of background pollutant on the air quality in street canyons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号