首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyze the observations of the X-ray pulsar KS 1947+300 performed by the INTEGRAL and RXTE observatories over a wide (3–100 keV) X-ray energy range. The shape of the pulse profile was found to depend on the luminosity of the source. Based on the model of a magnetized neutron star, we study the characteristics of the pulsar using the change in its spin-up rate. We estimated the magnetic field strength of the pulsar and the distance to the binary.  相似文献   

2.
We present the observations of the X-ray burster KS 1731-260 from 1988 until 1999 with the Kvant/TTM telescope supplemented with published data from the ASM and PCA instruments of the RXTE observatory for 1996–2001. We constructed the light curve of the source and confirmed the dependence of spectral variations on its X-ray luminosity.  相似文献   

3.
Observations of the X-ray burster SLX 1732-304 in the globular cluster Terzan 1 with the PCA/RXTE instrument in April 1997 are presented. The source was in a low state; its flux in the standard X-ray band was half the flux recorded by the ART-P/Granat telescope in 1990 also during its low state. At the same time, its spectrum was softer than the ART-P spectrum; it was well described by a power law with a photon index of 2.3 without any evidence of a high-energy cutoff.  相似文献   

4.
We analyze Chandra observatory images of the field of the X-ray burster KS 1731-260. A factor of 10 to 15 improvement in the localization accuracy (up to ~0.6″) has allowed a possible candidate for counterparts of KS 1731-260 to be determined from infrared sky images (Barret et al. 1998). The possible counterpart (the sky position difference is ~1.46″, i.e., less than 2σ) is a 16th magnitude star in the J band. If this star is actually an infrared counterpart of KS 1731-260, then we can estimate its luminosity and the lower limit on the counterpart total luminosity, L>L J,H ~10L . The sharp decline in the X-ray flux from KS 1731-260 in 2001 offers an additional test of whether the proposed candidate is actually a counterpart of KS 1731-260. If the optical and infrared luminosities of this counterpart are largely attributable to reradiation of the X-ray flux from the neutron star, as is the case in low-mass X-ray binaries, then the brightness of the counterpart star must decrease sharply in 2001, after the X-ray source is turned off.  相似文献   

5.
We analyze the observations of the X-ray pulsar LMCX-4 performed by the INTEGRAL observatory and the All-Sky Monitor (ASM) of the RXTE observatory over a wide energy range. The observed hard X-ray flux from the source is shown to change by more than a factor of 50 (from ~70 mCrab in the high state to ~1.3 mCrab in the low state) on the time scale of the accretion-disk precession period, whose mean value for 1996–2004 was determined with a high accuracy, Pprec = 30.275 ± 0.004 days. In the low state, a flare about 10 h in duration was detected from the source; the flux from the source increased by more than a factor of 4 during this flare. The shape of the pulsar’s broadband spectrum is essentially invariable with its intensity; no statistically significant features associated with the possible resonance cyclotron absorption line were found in the spectrum of the source.  相似文献   

6.
The source XTE J1901+014 discovered by the RXTE observatory during an intense outburst of hard radiation and classified as a fast X-ray transient is studied. The source’s spectral characteristics in the quiescent state have been investigated for the first time both in the soft X-ray energy range (3–20 keV) based on ROSAT and RXTE data and in the hard energy range (>20 keV) based on INTEGRAL data. A timing analysis of the source’s properties has revealed weak nonperiodic bursts of activity on time scales of several tens of seconds and two intense (~0.5–1 Crab) outbursts more than several hundred seconds in duration. Certain assumptions about the nature of the object under study are made.  相似文献   

7.
Various areas of the sky, including the Galactic-center region and the region with the X-ray binaries 4U 1700-37 and GRO J1655-40, were observed in the hard (10–300 keV) energy range during the Grif experiment onboard the Mir orbiting station. An epoch-folding analysis of the data has revealed periodicities with periods of 82 and 62 h, which are equal to the orbital periods of 4U 1700-37 and GRO J1655-40. Previously, these periodicities were observed during the Prognoz-9 X-ray experiment. Periodicities with periods in the range of days, 98 and 152 h, which were also observed during the Prognoz-9 experiment, were not revealed by the Grif data. We obtained upper limits on the intensities of these periodicities in various energy ranges. For the 62-h periodicity, we constructed an average 25–50-keV light curve and estimated the spectral flux density, which characterizes the intensity of the periodic component at different energies in different observing intervals during 1995–1997. The Prognoz-9 and Grif observations of GRO J1655-40 are compared with its CGRO, RXTE, and BeppoSax observations. The orbital periodicity is shown to manifest itself in the hard emission from the extremely bright X-ray transient GRO J1655-40, a likely black-hole candidate, even at the epochs between its X-ray outbursts.  相似文献   

8.
ART-P/Granat observations of the X-ray burster SLX 1732-304 in the globular cluster Terzan 1 are presented. The X-ray (3–20 keV) fluxes from the source differed by more than a factor of 4 during the observing sessions on September 8 (F x ? 6.95 × 10?10 erg cm?2 s?1) and October 6, 1990 (F x ? 1.64 × 10?10 erg cm?2 s?1). The intensity variations of SLX 1732-304 were apparently accompanied by variations in its hardness: whereas the source in its high state had the spectrum with a distinct exponential cutoff typical of bright low-mass X-ray binaries, its low-state spectrum could be satisfactorily described by a simple power law with a photon index α?1.7. During the ART-P observation on September 8, a type I X-ray burst was detected from SLX 1732-304.  相似文献   

9.
During the observation of the Galactic-center field by the INTEGRAL observatory on September 9, 2003, the IBIS/ISGRI gamma-ray telescope detected a short (several-hours-long) intense (~380 mCrab at the peak) outburst of hard radiation from the X-ray transient SAX J1818.6-1703. Previously, this source was observed only once in 1998 during a similar short outburst. We present the results of our localization, spectral and timing analyses of the object and briefly discuss the possible causes of the outburst. The release time of the bulk of the energy in such an outburst is appreciably shorter than the accretion (viscous) time that characterizes the flow of matter through a standard accretion disk.  相似文献   

10.
We analyze observations of the burster 4U 1724-307 (1E 1724-3045) in the globular cluster Terzan 2 from 1971 until 2001. Uhuru, OSO-8, Einstein, and EXOSAT observations are used. In addition, we analyze data from the TTM telescope onboard the Mir/Kvant observatory and from the ASM and PCA instruments onboard the RXTE observatory. Based on PCA/RXTE scanning observations, we have mapped the sky in the Galactic-center region. The derived light curve of the burster 4U 1724-307 shows the source to be variable on a time scale of 30 years: over the first 20 years of observations (1970–1990), the source flux was approximately constant, while in the 1990s, it rose over ~5 years and declined over approximately the same period, approaching its original value. We discuss several scenarios to explain the behavior of the light curve, including the evolution of the mass outflow rate from the donor-star surface, the episodic appearance of a second source in the globular cluster, and gravitational microlensing. As one of the scenarios, we also consider the possibility that the passage of a third star affects the accretion rate in the binary 4U 1724-307. We show that if this event is responsible for the 10-year-long rise in the luminosity of the burster 4U 1724-307, then the size and period of this binary can be estimated.  相似文献   

11.
We investigate the manifestation of the spiral structure in the distribution of high-mass X-ray binaries (HMXBs) over the host galaxy. We construct the simplest kinematic model. It shows that the HMXBs should be displaced relative to the spiral structure observed in such traditional star formation rate indicators as the Hα and far-infrared emissions because of their finite lifetimes. Using Chandra observations of M51, we have studied the distribution of X-ray sources relative to the spiral arms of this galaxy observed in Hα. Based on K-band data and background source number counts, we have separated the contributions from high-mass and low-mass X-ray binaries and active galactic nuclei. In agreement with model predictions, the distribution of HMXBs is wider than that of bright H II regions concentrated in the region of ongoing star formation. However, the statistical significance of this result is low, as is the significance of the concentration of the total population of X-ray sources to the spiral arms. We also predict the distribution of HMXBs in our Galaxy in Galactic longitude. The distribution depends on the mean HMXB age and can differ significantly from the distributions of such young objects as ultracompact H II regions.  相似文献   

12.
We performed new photoelectric U BV observations of the X-ray binary A0535+26 at the Crimean Station of the Sternberg Astronomical Institute in 1998–2003. After the brightness stabilized at a minimum of about 500 days in duration, a new brightness rise steeper than that observed previously began: the brightness increased over two seasons of observations by a total amplitude of \(0\mathop .\limits^m 5\). The physical parameters (T e , n e ) of the additional emission that caused this brightening match, within the error limits, were obtained from the averaged over 15 years, data, that include both the ascending and descending branches of the light curve. We found a delay of the variations in the Hα line relative to the continuum, which is no more than one year.  相似文献   

13.
Analysis of the RXTE slew data in October 1996 revealed a weak X-ray burst from the millisecond pulsar SAX J 1808.4-3658. The 3–20-keV energy spectrum of the source can be described by a power law with an index of 2.0 and a(3-to 20 keV) luminosity of ~1.4×1035 erg s?1 (the distance to the source was taken to be 2.5 kpc). Because of the short exposure time, we failed to detect weak pulsations at a frequency of 401 Hz in the source. The (2σ) upper limit of the pulse fraction is ~13%.  相似文献   

14.
The variability of the X-ray flux from the pulsar GX 301-2 is analyzed by using data from the ART-P telescope of the GRANAT Observatory. The intensity variations with time scales of several thousand seconds are studied at various orbital phases. The high-state flux from the source exceeds its low-state flux by as much as a factor of 10. The hardness and spectrum of the source are shown to change greatly with its intensity. These intensity variations are most likely caused by substantial inhomogeneities in the stellar wind from the companion star.  相似文献   

15.
During the GRIF experiment onboard the Mir orbiting station, the sky was monitored with a PX-2 wide-field (~1 sr) scintillation X-ray spectrometer to detect bursts in the photon energy range 10–300 keV. Because of the comprehensive instrumentation, which, apart from the X-ray and gamma-ray instruments, also included charged-particle detectors, the imitations of astrophysical bursts by magnetospheric electron precipitations and strongly ionizing nuclei were effectively filtered out. It was also possible to separate solar and atmospheric events. Several tens of bursts interpreted as being astrophysical were detected in the experiment at sensitivity levels S~10?7 erg cm?2 (for bursts whose spectra were characterized by effective temperatures kT~100 keV) and S~3×10?8 erg cm?2 (for bursts with kT~25 keV). Some of the soft gamma-ray or hard X-ray bursts with kT~10–50 keV were identified with the bursting pulsar GRO J1744-28. Our estimate of the detection rate for cosmological soft gamma-ray or hard X-ray bursts from the entire sky suggests that the distributions of long-duration (>1 s) gamma-ray bursts (GRBs) in characteristic energy kT and duration are inconsistent with the steady-state cosmological model in which the evolution of burst sources is disregarded. Based on GRIF and BATSE/CGRO data, we conclude that most of the GRB sources originate at redshifts 1<z<5.  相似文献   

16.
We report on a 50-ks observation of the bright Seyfert 1 galaxy MCG–6-30-15 with the Rossi X-ray Timing Explorer . The data clearly show the broad fluorescent iron line (equivalent width ∼ 250 eV) and the Compton reflection continuum at higher energies. A comparison of the iron line and the reflection continuum has enabled us to constrain the reflective fraction and the elemental abundances in the accretion disc. Temporal studies provide evidence that spectral variability is a result of changes in both the amount of reflection seen and the properties of the primary X-ray source itself.  相似文献   

17.
18.
We report on observations of the X-ray pulsar IGR J16320−4751 (also known as AX J1631.9−4752) performed simultaneously with International Gamma-Ray Astrophysics Laboratory ( INTEGRAL ) and XMM–Newton . We refine the source position and identify the most likely infrared counterpart. Our simultaneous coverage allows us to confirm the presence of X-ray pulsations at ∼1300 s, that we detect above 20 keV with INTEGRAL for the first time. The pulse fraction is consistent with being constant with energy, which is compatible with a model of polar accretion by a pulsar. We study the spectral properties of IGR J16320−4751 during two major periods occurring during the simultaneous coverage with both satellites, namely a flare and a non-flare period. We detect the presence of a narrow 6.4 keV iron line in both periods. The presence of such a feature is typical of supergiant wind accretors such as Vela X-1 or GX 301−2. We inspect the spectral variations with respect to the pulse phase during the non-flare period, and show that the pulse is solely due to variations of the X-ray flux emitted by the source and not due to variations of the spectral parameters. Our results are therefore compatible with the source being a pulsar in a High Mass X-ray Binary. We detect a soft excess appearing in the spectra as a blackbody with a temperature of ∼0.07 keV. We discuss the origin of the X-ray emission in IGR J16320−4751: while the hard X-rays are likely the result of Compton emission produced in the close vicinity of the pulsar, based on energy argument we suggest that the soft excess is likely the emission by a collisionally energized cloud in which the compact object is embedded.  相似文献   

19.
Integral spectroscopy data for the nebula GM 1-29 and the source star PV Cep obtained on the 2.6-m telescope at the Byurakan Observatory are presented. The structure and kinematics of a collimated emission outflow directed along the axis of the nebula are studied. Changes in the radial velocity and intensity of the absorption component of the nebular Hα line are observed and studied; these are interpreted as a result of an anisotropy in the stellar wind at distances on the order of several stellar radii, where this absorption is formed. __________ Translated from Astrofizika, Vol. 51, No. 3, pp. 461–468 (August 2008).  相似文献   

20.
Calculations of the energy evolution of relativistic particles in a cluster of galaxies are presented. The heating of the X-ray gas by the radio gas in the cluster PKS 0745-191 is derived using Chandra X-ray data and VLA radio data. It is found that the heating is not sufficient for the radiation loss of the X-ray gas if the lower limit of energy in the power-law spectrum of relativistic electrons is set at 0.001 erg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号