首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
For the singular, non-Hermitian, and positive semidefinite linear systems, we propose an alternating-direction iterative method with two parameters based on the Hermitian and skew-Hermitian splitting. The semi-convergence analysis and the quasi-optimal parameters of the proposed method are discussed. Moreover, the corresponding preconditioner based on the splitting is given to improve the semi-convergence rate of the GMRES method. Numerical examples are given to illustrate the theoretical results and the efficiency of the generalized HSS method either as a solver or a preconditioner for GMRES.  相似文献   

2.
An effective algorithm for solving large saddle-point linear systems, presented by Krukier et al., is applied to the constrained optimization problems. This method is a modification of skew-Hermitian triangular splitting iteration methods. We consider the saddle-point linear systems with singular or semidefinite (1, 1) blocks. Moreover, this method is applied to precondition the GMRES. Numerical results have confirmed the effectiveness of the method and showed that the new method can produce high-quality preconditioners for the Krylov subspace methods for solving large sparse saddle-point linear systems.  相似文献   

3.
We study the preconditioned iterative methods for the linear systems arising from the numerical solution of the multi-dimensional space fractional diffusion equations. A sine transform based preconditioning technique is developed according to the symmetric and skew-symmetric splitting of the Toeplitz factor in the resulting coefficient matrix. Theoretical analyses show that the upper bound of relative residual norm of the GMRES method when applied to the preconditioned linear system is mesh-independent which implies the linear convergence. Numerical experiments are carried out to illustrate the correctness of the theoretical results and the effectiveness of the proposed preconditioning technique.  相似文献   

4.
We discuss semi-convergence of the modified Hermitian and skew-Hermitian splitting (MHSS) iteration method for solving a broad class of complex symmetric singular linear systems. The semi-convergence theory of the MHSS iteration method is established. In addition, numerical examples show the effectiveness of the MHSS iteration method when it is used as a solver or as a preconditioner (for the restarted GMRES method).  相似文献   

5.
A class of preconditioners for solving non-Hermitian positive definite systems of linear algebraic equations is proposed and investigated. It is based on Hermitian and skew-Hermitian splitting of the initial matrix. A generalization for saddle point systems having semidefinite or singular (1, 1) blocks is given. Our approach is based on an augmented Lagrangian formulation. It is shown that such preconditioners can be efficiently used for the iterative solution of systems of linear algebraic equations by the GMRES method.  相似文献   

6.
By further generalizing the skew-symmetric triangular splitting iteration method studied by Krukier, Chikina and Belokon (Applied Numerical Mathematics, 41 (2002), pp. 89–105), in this paper, we present a new iteration scheme, called the modified skew-Hermitian triangular splitting iteration method, for solving the strongly non-Hermitian systems of linear equations with positive definite coefficient matrices. We discuss the convergence property and the optimal parameters of this new method in depth. Moreover, when it is applied to precondition the Krylov subspace methods like GMRES, the preconditioning property of the modified skew-Hermitian triangular splitting iteration is analyzed in detail. Numerical results show that, as both solver and preconditioner, the modified skew-Hermitian triangular splitting iteration method is very effective for solving large sparse positive definite systems of linear equations of strong skew-Hermitian parts.  相似文献   

7.
王倩  戴华 《计算数学》2013,35(2):195-204
迭代极小残差方法是求解大型线性方程组的常用方法, 通常用残差范数控制迭代过程.但对于不适定问题, 即使残差范数下降, 误差范数未必下降. 对大型离散不适定问题,组合广义最小误差(GMERR)方法和截断奇异值分解(TSVD)正则化方法, 并利用广义交叉校验准则(GCV)确定正则化参数,提出了求解大型不适定问题的正则化GMERR方法.数值结果表明, 正则化GMERR方法优于正则化GMRES方法.  相似文献   

8.
Steepest descent preconditioning is considered for the recently proposed nonlinear generalized minimal residual (N‐GMRES) optimization algorithm for unconstrained nonlinear optimization. Two steepest descent preconditioning variants are proposed. The first employs a line search, whereas the second employs a predefined small step. A simple global convergence proof is provided for the N‐GMRES optimization algorithm with the first steepest descent preconditioner (with line search), under mild standard conditions on the objective function and the line search processes. Steepest descent preconditioning for N‐GMRES optimization is also motivated by relating it to standard non‐preconditioned GMRES for linear systems in the case of a standard quadratic optimization problem with symmetric positive definite operator. Numerical tests on a variety of model problems show that the N‐GMRES optimization algorithm is able to very significantly accelerate convergence of stand‐alone steepest descent optimization. Moreover, performance of steepest‐descent preconditioned N‐GMRES is shown to be competitive with standard nonlinear conjugate gradient and limited‐memory Broyden–Fletcher–Goldfarb–Shanno methods for the model problems considered. These results serve to theoretically and numerically establish steepest‐descent preconditioned N‐GMRES as a general optimization method for unconstrained nonlinear optimization, with performance that appears promising compared with established techniques. In addition, it is argued that the real potential of the N‐GMRES optimization framework lies in the fact that it can make use of problem‐dependent nonlinear preconditioners that are more powerful than steepest descent (or, equivalently, N‐GMRES can be used as a simple wrapper around any other iterative optimization process to seek acceleration of that process), and this potential is illustrated with a further application example. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we discuss convergence of the extrapolated iterative methods for solving singular linear systems. A general principle of extrapolation is presented. The semiconvergence of an extrapolated method induced by a regular splitting and a nonnegative splitting is proved whenever the coefficient matrix A is a singular M-matrix with ‘property c’ and an irreducible singular M-matrix, respectively. Since the (generalized, block) JOR and AOR methods are respectively the extrapolated methods of the (generalized, block) Jacobi and SOR methods, so the semiconvergence of the (generalized, block) JOR and AOR methods for solving general singular systems are proved. Furthermore, the semiconvergence of the extrapolated power method, the (block) JOR, AOR and SOR methods for solving Markov chains are discussed.  相似文献   

10.
In this paper, based on the Hermitian and skew-Hermitian splitting, we give a generalized modified Hermitian and skew-Hermitian splitting (GMHSS) method to solve singular complex symmetric linear systems, this method has two parameters. We give the semi-convergent conditions, and some numerical experiments are given to illustrate the efficiency of this method.  相似文献   

11.
In this paper, we study the Generalized Minimal Residual (GMRES) method for solving singular linear systems, particularly when the necessary and sufficient condition to obtain a Krylov solution is not satisfied. Thanks to some new results which may be applied in exact arithmetic or in finite precision, we analyze the convergence of GMRES and restarted GMRES. These formulas can also be used in the case when the systems are nonsingular. In particular, it allows us to understand what is often referred to as stagnation of the residual norm of GMRES. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Circulant-block preconditioners for solving ordinary differential equations   总被引:1,自引:0,他引:1  
Boundary value methods for solving ordinary differential equations require the solution of non-symmetric, large and sparse linear systems. In this paper, these systems are solved by using the generalized minimal residual (GMRES) method. A circulant-block preconditioner is proposed to speed up the convergence rate of the GMRES method. Theoretical and practical arguments are given to show that this preconditioner is more efficient than some other circulant-type preconditioners in some cases. A class of waveform relaxation methods is also proposed to solve the linear systems.  相似文献   

13.
Nonsymmetric linear systems of algebraic equations which are small rank perturbations of block band-Toeplitz matrices from discretization of time-dependent PDEs are considered. With a combination of analytical and experimental results, we examine the convergence characteristics of the GMRES method with circulant-like block preconditioning for solving these systems.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

14.
We discuss the convergence of a two‐level version of the multilevel Krylov method for solving linear systems of equations with symmetric positive semidefinite matrix of coefficients. The analysis is based on the convergence result of Brown and Walker for the Generalized Minimal Residual method (GMRES), with the left‐ and right‐preconditioning implementation of the method. Numerical results based on diffusion problems are presented to show the convergence.  相似文献   

15.
We describe a Krylov subspace technique, based on incomplete orthogonalization of the Krylov vectors, which can be considered as a truncated version of GMRES. Unlike GMRES(m), the restarted version of GMRES, the new method does not require restarting. Like GMRES, it does not break down. Numerical experiments show that DQGMRES(k) often performs as well as the restarted GMRES using a subspace of dimension m=2k. In addition, the algorithm is flexible to variable preconditioning, i.e., it can accommodate variations in the preconditioner at every step. In particular, this feature allows the use of any iterative solver as a right-preconditioner for DQGMRES(k). This inner-outer iterative combination often results in a robust approach for solving indefinite non-Hermitian linear systems.  相似文献   

16.
Li et al. recently studied the generalized HSS (GHSS) method for solving singular linear systems (see Li et al., J. Comput. Appl. Math. 236, 2338–2353 (2012)). In this paper, we generalize the method and present a generalized preconditioned Hermitian and skew-Hermitian splitting method (GPHSS) to solve singular saddle point problems. We prove the semi-convergence of GPHSS under some conditions, and weaken some semi-convergent conditions of GHSS, moreover, we analyze the spectral properties of the corresponding preconditioned matrix. Numerical experiments are given to illustrate the efficiency of GPHSS method with appropriate parameters both as a solver and as a preconditioner.  相似文献   

17.
We investigate the restart of the Restarted Shifted GMRES method for solving shifted linear systems.Recently the variant of the GMRES(m) method with the unfixed update has been proposed to improve the convergence of the GMRES(m) method for solving linear systems,and shown to have an efficient convergence property.In this paper,by applying the unfixed update to the Restarted Shifted GMRES method,we propose a variant of the Restarted Shifted GMRES method.We show a potentiality for efficient convergence within the variant by some numerical results.  相似文献   

18.
Boundary value methods (BVMs) for ordinary differential equations require the solution of non‐symmetric, large and sparse linear systems. In this paper, these systems are solved by using the generalized minimal residual (GMRES) method. A block‐circulant preconditioner with circulant blocks (BCCB preconditioner) is proposed to speed up the convergence rate of the GMRES method. The BCCB preconditioner is shown to be invertible when the BVM is Ak1,k2‐stable. The spectrum of the preconditioned matrix is clustered and therefore, the preconditioned GMRES method converges fast. Moreover, the operation cost in each iteration of the preconditioned GMRES method by using our BCCB preconditioner is less than that required by using block‐circulant preconditioners proposed earlier. In numerical experiments, we compare the number of iterations of various preconditioners. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
We give a geometric framework for analysing iterative methods on singular linear systems A x = b and apply them to Krylov subspace methods. The idea is to decompose the method into the ?(A) component and its orthogonal complement ?(A)?, where ?(A) is the range of A. We apply the framework to GMRES, GMRES(k) and GCR(k), and derive conditions for convergence without breakdown for inconsistent and consistent singular systems. The approach also gives a geometric interpretation and different proofs of the conditions obtained by Brown and Walker for GMRES. We also give examples arising in the finite difference discretization of two‐point boundary value problems of an ordinary differential equation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
By further generalizing the modified skew-Hermitian triangular splitting iteration methods studied in [L. Wang, Z.-Z. Bai, Skew-Hermitian triangular splitting iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts, BIT Numer. Math. 44 (2004) 363-386], in this paper, we present a new iteration scheme, called the product-type skew-Hermitian triangular splitting iteration method, for solving the strongly non-Hermitian systems of linear equations with positive definite coefficient matrices. We discuss the convergence property and the optimal parameters of this method. Moreover, when it is applied to precondition the Krylov subspace methods, the preconditioning property of the product-type skew-Hermitian triangular splitting iteration is analyzed in detail. Numerical results show that the product-type skew-Hermitian triangular splitting iteration method can produce high-quality preconditioners for the Krylov subspace methods for solving large sparse positive definite systems of linear equations of strong skew-Hermitian parts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号