首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nonlinear Dynamics - This paper investigates the fixed-time synchronization of complex dynamical networks with nonidentical nodes in the presence of bounded uncertainties and disturbances using...  相似文献   

3.
Nonlinear Dynamics - This paper presents an analytical framework to investigate the dynamical behavior of a recent chaotic jerk model with multiple attractors. The methods of analytical analysis...  相似文献   

4.
Guo  Mei  Gao  Zhenhao  Xue  Youbao  Dou  Gang  Li  Yuxia 《Nonlinear dynamics》2018,91(3):1681-1696
The invariants of an attractor have been the most used resource to characterize a nonlinear dynamics. Their estimation is a challenging endeavor in short-time series and/or in presence of noise. In this article, we present two new coarse-grained estimators for the correlation dimension and for the correlation entropy. They can be easily estimated from the calculation of two U-correlation integrals. We have also developed an algorithm that is able to automatically obtain these invariants and the noise level in order to process large data sets. This method has been statistically tested through simulations in low-dimensional systems. The results show that it is robust in presence of noise and short data lengths. In comparison with similar approaches, our algorithm outperforms the estimation of the correlation entropy.  相似文献   

5.
A three-dimensional autonomous chaotic system is presented and physically implemented. Some basic dynamical properties and behaviors of this system are described in terms of symmetry, dissipative system, equilibria, eigenvalue structures, bifurcations, and phase portraits. By tuning the parameters, the system displays chaotic attractors of different shapes. For specific parameters, the system exhibits periodic and chaotic bursting oscillations which resemble the conventional heart sound signals. The existence of Shilnikov type of heteroclinic orbit in the three-dimensional system is proven using the undetermined coefficients method. As a result, Shilnikov criterion guarantees that the three-dimensional system has the horseshoe chaos. The corresponding electronic circuit is designed and implemented, exhibiting experimental chaotic attractors in accord with numerical simulations.  相似文献   

6.
Fan  Yingjie  Huang  Xia  Wang  Zhen  Li  Yuxia 《Nonlinear dynamics》2018,93(2):611-627
Nonlinear Dynamics - In this paper, a simplified memristor-based fractional-order neural network (MFNN) with discontinuous memductance function is proposed. It is essentially a switched system with...  相似文献   

7.
Although different hyperjerk systems have been discovered, a few hyperjerk systems can exhibit hyperchaotic behavior. In this work, we introduce a new hyperjerk system with hyperchaotic attractors. By investigating dynamics of the system, we have observed the different coexisting attractors such as coexistence of period-2 attractors, or coexistence of period-2 attractor and quasiperiodic attractor. It is worth noting that this striking phenomenon is rarely reported in a hyperjerk system. The proposed system has been realized with electronic components. The agreement between the simulation and experimental results indicates the feasibility of the hyperjerk system. Moreover, chaos control and synchronization of such hyperjerk system have been also reported.  相似文献   

8.
A new three-dimensional double-wing chaotic system with three quadratic terms was proposed. And the parameters which can induce the system are analyzed. The system with five equilibrium points has sophisticated dynamical behaviors and it is further investigated in details, including phase trajectory, Lyapunov exponent spectrum, Poincaré map, spectrogram map and dissipativity analysis. The circuit simulation results of the chaotic attractors are in agreement with numerical simulations. Furthermore, numerical simulations indicate that mismatch synchronization can be achieved and circuit simulations of the system synchronization are also presented.  相似文献   

9.
The bifurcation mechanism of bursting oscillations in a three-dimensional autonomous slow-fast Kingni et al. system (Nonlinear Dyn. 73, 1111–1123, 2013) and its fractional-order form are investigated in this paper. The stability analysis of the system is carried out assuming that the slow subsystem evolves on quasi-static state. It is reveaved that the bursting oscillations found in the system result from the system switching between the unstable and the stable states of the only equilibrium point of the fast subsystem. We refer this class of bursting to “source/bursting.” The coexistence of symmetrical bursting limit cycles and chaotic bursting attractors is observed. In addition, the fractional-order chaotic slow-fast system is studied. The lowest order of the commensurate form of this system to exhibit chaotic behavior is found to be 2.199. By tuning the commensurate fractional-order, the chaotic slow-fast system displays Chen- and Lorenz-like chaotic attractors, respectively. The stability analysis of the controlled fractional-order-form of the system to its equilibria is undertaken using Routh–Hurwitz conditions for fractional-order systems. Moreover, the synchronization of chaotic bursting oscillations in two identical fractional-order systems is numerically studied using the unidirectional linear error feedback coupling scheme. It is shown that the system can achieve synchronization for appropriate coupling strength. Furthermore, the effect of fractional derivatives orders on chaos control and synchronization is analyzed.  相似文献   

10.
In this paper, a memristor with a fourth degree polynomial memristance function is used in the simplest chaotic circuit which has only three circuit elements: a linear passive inductor, a linear passive capacitor, and a nonlinear active memristor. We use second order exponent internal state memristor function and fourth degree polynomial memristance function to increase complexity of the chaos. So, the system can generate double-scroll attractor and four-scroll attractor. Systematic studies of chaotic behavior in the integer-order and fractional-order systems are performed using phase portraits, bifurcation diagrams, Lyapunov exponents, and stability analysis. Simulation results show that both integer-order and fractional-order systems exhibit chaotic behavior over a range of control parameters.  相似文献   

11.
In this study the dynamic response of autonomous mainly dissipative multi D.O.F. systems under step loading is re-examined. Based on the geometrical point of view of the theory of non-linear dynamical systems and the rapidly developing theory of attractors, the investigation focuses on limit point like systems, with snapping as their salient feature. It is found that dynamic buckling (through a saddle or its neighborhood) , although leading to a large amplitude motion, may be associated with a point attractor response on the pre-buckling fixed point, depending on the amount of damping considered in close conjunction with the motion channel geometry and the total potential characteristics of all (stable and complementary) equilibria. For such systems, only a straightforward fully non-linear dynamic analysis can provide valid information on the global dynamic stability, since the shape of the total potential hypersurface may become very complicated, rendering energy aspects practically not applicable. A 2-D.O.F. model, simulating an asymmetric suspended roof is comprehensively analyzed to capture the above findings, and a parametric investigation is carried out, revealing a variety of new dynamic response types and leading to a more accurate insight of the stability of motion in the large.  相似文献   

12.
A novel memristive chaotic circuit is proposed by replacing the Chua’s diode in modified Chua’s circuit with a smooth active memristor, and the corresponding memristive model is analyzed and validated. The equilibrium point set, dissipativity and stability of this new chaotic circuit are developed theoretically. The dynamic characteristics for the new system are presented by means of phase diagrams, Lyapunov exponents, bifurcation diagrams and Poincaré maps. The coexistence of the memristive system is carried out from the perspective of asymmetric coexistence and symmetry coexistence. In addition, the coexistence of multiple states is studied by a more direct method with initial value as the system variable to gain a more intuitive observation. The circuit model of the memristive chaotic system is designed through Multisim simulation software. Finally, the memristive chaotic sequence is used to encrypt the image, and the influence of multistability on the encryption is investigated by the histogram, correlation and key sensitivity. The results show that the proposed new memristive chaotic system has high security.  相似文献   

13.
14.
In this paper, a new three-dimensional autonomous system with complex dynamical behaviors is reported. This new system has three quadratic nonlinear terms and one constant term. One remarkable feature of the system is that it can generate multiple chaotic and multiple periodic attractors in a wide range of system parameters. The presence of coexisting chaotic and periodic attractors in the system is investigated. Moreover, it is easily found that the new system also can generate four-scroll chaotic attractor. Some basic dynamical behaviors of the system are investigated through theoretical analysis and numerical simulation.  相似文献   

15.
Recently a new attractor, called hidden attractor, has been found in the well-known Chua’s circuit, whose basin of attraction does not contain neighborhood of any equilibrium. This paper will restudy this circuit, showing that two hidden attractors can coexist in this circuit for some parameters, and characterizes the basins of these two attractors by means of computer method as well. In addition, a computer-assisted proof of the chaoticity of these attracters is presented by a topological horseshoe theory.  相似文献   

16.
17.
This article introduces a new chaotic system of 3-D quadratic autonomous ordinary differential equations, which can display 2-scroll chaotic attractors. Some basic dynamical behaviors of the new 3-D system are investigated. Of particular interest is that the chaotic system can generate complex 3-scroll and 4-scroll chaotic attractors. Finally, bifurcation analysis shows that the system can display extremely rich dynamics. The obtained results clearly show that this is a new chaotic system which deserves further detailed investigation.  相似文献   

18.
In this paper, several smooth canonical 3-D continuous autonomous systems are proposed in terms of the coefficients of nonlinear terms. These systems are derived from the existing 3-D four-wing smooth continuous autonomous chaotic systems. These new systems are the simplest chaotic attractor systems which can exhibit four wings. They have the basic structure of the existing 3-D four-wing systems, which means they can be extended to the existing 3-D four-wing chaotic systems by adding some linear and/or quadratic terms. Two of these systems are analyzed. Although the two systems are similar to each other in structure, they are different in dynamics. One is sensitive to the initializations and sampling time, but another is not, which is shown by comparing Lyapunov exponents, bifurcation diagrams, and Poincaré maps.  相似文献   

19.
Wang  Zhen  Akgul  Akif  Pham  Viet-Thanh  Jafari  Sajad 《Nonlinear dynamics》2017,89(3):1877-1887
Nonlinear Dynamics - Novel chaotic system designs and their engineering applications have received considerable critical attention. In this paper, a new three-dimensional chaotic system and its...  相似文献   

20.
Guo  Mei  Yang  Ran  Zhang  Meng  Liu  Renyuan  Zhu  Yongliang  Dou  Gang 《Nonlinear dynamics》2021,105(1):877-886
Nonlinear Dynamics - In this paper, a novel memcapacitor is designed by the SBT ( $$\hbox {Sr}_{0.95}\hbox {Ba}_{0.05}\hbox {TiO}_{{3}}$$ ) memristor and two capacitors. A fifth-order memcapacitor...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号