首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
通过电子转移活化再生催化剂原子转移自由基聚合法(ARGET ATRP)依次聚合单体甲基丙烯酸甲酯(MMA)和甲基丙烯酸-2,2,6,6-四甲基-4-哌啶基酯(TMPM),制得嵌段共聚物PMMA-PTMPM,再用3-氯过氧苯甲酸(mCPBA)将TMPM中的哌啶基氧化为2,2,6,6-四甲基哌啶氮氧自由基(TEMPO),得到负载链段为聚甲基丙烯酸甲酯的氮氧自由基嵌段共聚物PMMA-PTMA。通过红外光谱、核磁共振波谱、紫外可见分光光度计和凝胶渗透色谱等手段对共聚物进行表征。研究了嵌段共聚物在分子氧氧化体系下对伯醇的选择性催化氧化性能,并与均聚物PTMA和负载链段为聚乙二醇的氮氧自由基嵌段共聚物PEG-PTMA进行比较。结果表明,嵌段共聚物在分子氧氧化体系中催化性能良好,整体性能优于PTMA和PEG-PTMA,并且嵌段共聚物回收方便,可以实现重复使用。  相似文献   

2.
使用原子转移自由基聚合(ATRP)制备三嵌段共聚物PS-b-PEG-b-PS.通过红外光谱、核磁共振氢谱(1H-NMR)和凝胶渗透色谱(GPC)对嵌段共聚物结构及分子量进行表征.将嵌段共聚物与聚苯乙烯溶液共混成膜,使用原子力显微镜(AFM)和接触角测试仪(CA)对不同含量嵌段共聚物共混膜的表面形貌和性能进行了分析表征.PEG链段与PS链段在共混膜中发生了微相分离,由于PEG链段对PS链段的热力学排斥作用以及PS的硬链段特性,PS不能在PEG微区上方形成覆盖,因而在薄膜表面形成大量孔洞,PEG微相区位于孔洞底部.随嵌段共聚物含量增加,孔洞(PEG微区)尺寸增大.当嵌段共聚物含量增加10%以后,孔洞内出现PS微相区,导致形成“胞状”结构.嵌段共聚物含量增加使得共混薄膜的亲水性和表面张力增大.  相似文献   

3.
PET-PEG嵌段共聚物的序列结构研究   总被引:4,自引:0,他引:4  
用直接酯化法合成了一系列不同 PGE含量的 PET- PEG(聚对苯二甲酸乙二醇酯-聚乙二醇 )嵌段共聚物。用 FTIR、H1- NMR等测试手段对嵌段共聚物的序列结构进行分析。证明 PET- PEG嵌段共聚物的组成与投料比非常接近 ;其分子链结构特征是以硬段 PET封端的多嵌段共聚物 ;PEG含量影响大分子链的序列结构 ,随 PEG含量的增加 ,硬段长度减小 ,软段长度增加。  相似文献   

4.
采用熔融缩聚法以钛酸四丁酯为催化剂,使单体发生酯交换反应,成功制备了一系列以聚乙二醇(PEG)为亲水软段,以聚丁二酸丁二醇酯(PBS)为硬段的嵌段共聚物,采用1H-NMR确定了共聚物的结构组成;采用DSC、吸水性测试及水解降解试验对嵌段共聚物性能表征,结果表明共聚物中两种链段的含量与原料投料比一致,具有可调控性。由于PEG的引入,使共聚物结晶性下降,亲水性和降解性得到显著改善。  相似文献   

5.
以聚乙二醇(PEG-400)、环氧氯丙烷为原料,氢氧化钾为缚酸剂,十六烷基三甲基溴化铵为相转移催化剂制得聚乙二醇缩水甘油醚(epoxide-PEG-epoxide).然后,在氢氧化钠水溶液中,聚乙二醇缩水甘油醚中的环氧键水解生成分子链两端各含有两个羟基的大分子引发剂((HO)2PEG(OH)2).最终,以辛酸亚锡为催化剂,端羟基大分子引发剂引发ε-己内酯开环聚合,合成了不同相对分子质量的H型两亲性嵌段共聚物((PCL)2PEG(PCL)2).通过红外光谱(FTIR)和核磁共振氢谱(1H-NMR),聚乙二醇缩水甘油醚,端羟基大分子引发剂和H型两亲性嵌段共聚物的结构得到了确认.示差扫描量热法对两亲性嵌段共聚物热性能的研究表明:当亲水段的聚乙二醇分子量为400时,聚合物的熔融温度主要受疏水段的聚己内酯影响,随着聚己内酯链段长度的增加,熔融温度升高.  相似文献   

6.
采用阴离子聚合方法合成了具有不同环氧乙烷聚合度的聚丁二烯-b-聚环氧乙烷嵌段共聚物(PB-b-PEO嵌段共聚物),然后催化加氢得到聚乙烯-b-聚环氧乙烷嵌段共聚物(PE-b-PEO嵌段共聚物),使用凝胶渗透色谱仪(GPC)、核磁共振氢谱(1H-NMR)对共聚物进行了分析,结果表明所得聚合物具有预定的结构。通过熔融压片的方法制备PE-b-PEO嵌段共聚物均质膜,考察了PE-b-PEO嵌段共聚物分子链中聚环氧乙烷的聚合度对渗透汽化分离性能的影响。  相似文献   

7.
研究了对丙烯的高速间规活性聚合有效的Cs-对称胺芴二甲基钛络合物-干燥修饰甲基铝氧烷(dMMAO)催化剂体系对乙烯的聚合行为的影响。结果表明:乙烯常压聚合表现出稳定的聚合速率,聚合活性达到282 kg-PE/(mol-Ti·h);利用间歇聚合法进行乙烯聚合的单体转化率均达到99%以上,说明催化体系无失活现象,但得到的聚乙烯在135℃下不溶于GPC溶剂邻二氯苯中;采用先加入定量丙烯单体聚合完全结束后,再加入定量乙烯单体进行聚合的方法合成了sPP-b-PE嵌段共聚物。嵌段共聚合的结果说明乙烯聚合是以活性聚合的方式进行的。利用该催化体系还合成了丙烯-乙烯丙烯双嵌段共聚物(sPP-b-E/P)以及丙烯-乙烯丙烯-丙烯(sPP-b-E/P-b-sPP)三嵌段共聚物。  相似文献   

8.
对生物降解聚合物PBS共聚改性的研究   总被引:3,自引:0,他引:3  
韩伟  张敏  宋洁  王蕾  崔春娜  邱建辉 《塑料》2008,37(3):87-89
采用不同官能团如苯二甲酸(TA)、聚乙二醇(PEG,Mn=1000)对聚丁二酸丁二醇酯(PBS)主链进行共聚改性,得到了基于PBS的均聚共聚物PBST;嵌段共聚物PBES。利用1H-NMR、GPC、WXRD、热分析、拉力试验对共聚物的化学结构、相对分子质量、结晶性、热性能及力学性质的影响进行了研究。结果表明:将TA、PEG引入PBS的主链,在较短时间内得到了数均分子质量约5万的无规PBST和嵌段PBES共聚物;PEG的介入使聚合物的结晶度降低、断裂伸长率大幅度增加,最大达846.4%;TA的介入则使其结晶度增加,断裂伸长率呈逐渐减小的趋势,但仍比PBS有所增大;两种聚合物均有良好的热稳定性。  相似文献   

9.
合成了不同拓扑结构的聚乙二醇-聚己内酯(PEG-PCL)嵌段共聚物,共聚物结构分别为AB型线性两嵌段(diblock)、ABA型线性三嵌段(triblock)、AB_2型星形(star shape)嵌段共聚物。通过表征发现嵌段共聚物的分子量与设计的分子量接近,且相对分子量分布窄。通过XRD、DSC、热台偏光显微镜(HSPOM)研究了拓扑结构对共聚物结晶的影响。ABA聚合物中间的PEG亲水链受到两端PCL链段阻碍,其结晶衍射峰最弱。三者的等温结晶速率按AB、AB_2、ABA的速率递减,形成的球晶结构规整度则逐渐增加。  相似文献   

10.
采用开环聚合法,固体超强酸SO42-/ZrO2-CeO2为催化剂,催化丙交酯和聚乙二醇合成PLA-PEG嵌段共聚物,研究了聚乙二醇(PEG)分子量、反应时间、温度、催化剂用量等条件对共聚物的影响,并通过红外光谱、Hammett指示剂法及NH3-TPD等方法对固体超强酸的酸性质进行了表征。结果表明,当焙烧温度为650℃时,得到的固体超强酸SO24-/ZrO2-CeO2酸强度与酸量最大,用该催化剂催化合成PLA-PEG嵌段共聚物,当PEG分子量为6 000,反应时间9 h、反应温度170℃,催化剂用量为丙交酯质量分数的1.0%时,得到PLA-PEG共聚物的特性粘数最大,为1.693 g/dL。  相似文献   

11.
为了制备综合性能优异的固态聚合物电解质基材,通过碘转移活性自由基聚合(ITP)合成聚偏氟乙烯-b-聚甲氧基聚乙二醇甲基丙烯酸酯(PVDF-b-PPEGMA)共聚物。通过1H-核磁共振和凝胶渗透色谱证明了共聚物分子的合成,采用红外光谱和透射电子显微镜分析共聚物的凝聚态结构,并测试共聚物/双三氟甲基磺酰亚胺锂(LiTFSi)固态聚合物电解质的电导率。结果表明:聚甲氧基聚乙二醇甲基丙烯酸酯(PPEGMA)链段的嵌段引入可促进β相聚偏氟乙烯(PVDF)结晶的形成;PVDF和PPEGMA链段热力学不相容,嵌段共聚物存在微相分离,随着PPEGMA嵌段比增加,共聚物由“海-岛”相结构向双连续相结构转变。PPEGMA质量分数为25.5%的嵌段共聚物与锂盐混合(氧化乙烯与Li+物质的量比n(EO):n(Li+)为10:1)能达到9.4×10-5 S·cm-1的室温离子电导率。  相似文献   

12.
研究了MgCl2/TiCl4/邻苯二甲酸二异丁酯和MgCl2/TiCl4/9,9-二甲氧基甲基-芴两种催化剂体系催化乙烯和丙烯共聚合的规律、共聚物的热性能及动态力学性能。两种催化剂在40℃催化乙烯和丙烯共聚合时,催化剂活性随着乙烯含量的增加先增后降。对于含有二酯型内给电子体的催化剂,n(C2H4)为10%时,催化剂活性最大;对于含有二醚型内给电子体的催化剂,n(C2H4)为30%时,催化剂活性最大,且二醚型催化剂的活性高于二酯型催化剂。在乙烯含量较低时,用二酯型催化剂催化合成的共聚物中含有更多的嵌段结构,而二醚型催化剂催化合成的共聚物更趋于无规结构。当反应气中乙烯占多数时,共聚物不再具有长的聚丙烯链段,而出现长的聚乙烯链段。  相似文献   

13.
采用一步法合成了由聚乙二醇(PEG)链段和聚酰胺6(PA6)链段组成的聚醚酰胺嵌段共聚物,用红外光谱和核磁共振波谱等手段确证了它的化学结构。随着合成配方中己内酰胺用量的减少,聚醚酰胺嵌段共聚物相对分子质量下降,PA6链段变短。合成的聚醚酰胺嵌段共聚物具有微相分离结构,表面电阻率随着其中PEG链段含量的增加而下降。将合成的聚醚酰胺嵌段共聚物以10%的质量分数添加到ABS塑料中,其表面电阻率由1014Ω量级下降到1011Ω量级,拉伸强度变化不大,断裂伸长率有所下降。  相似文献   

14.
烯烃多嵌段共聚物是一种新型的聚烯烃热塑性弹性体,主要通过催化乙烯和1-辛烯链穿梭聚合制备得到多嵌段含"软段"和"硬段"的聚合物,其独特结构和性能已经成为新材料的研究热点。本文概述了烯烃嵌段多共聚物的结构和制备合成,并指出了烯烃多嵌段共聚物性能和应用前景。  相似文献   

15.
以碘仿为引发剂、连二亚硫酸钠/碳酸氢钠为催化体系、十二烷基硫酸钠/十六烷为乳化体系,通过单电子转移-蜕化链转移(SET-DT)活性自由基细乳液聚合合成碘端基化聚丙烯酸丁酯(I-PBA-I),进而以其为大分子引发剂引发苯乙烯聚合,制备聚苯乙烯-b-聚丙烯酸丁酯-b-聚苯乙烯(PS-b-PBA-b-PS)三嵌段共聚物,并进行共聚物结构和性能表征。发现两个阶段的SET-DT细乳液聚合均具有大的反应速率,碘仿引发剂用量少,可获得高分子量PBA和PS-b-PBA-b-PS共聚物。PS-b-PBA-b-PS共聚物具有微相分离和热塑性弹性体特征,PS质量分数为50%的嵌段共聚物的拉伸强度达9.8 MPa,断裂伸长率为660%。  相似文献   

16.
采用原子转移自由基活性聚合(ATRP)的方法,先以苯乙烯(St)为单体,α-溴代异丁酸乙酯(Ei B-Br)为小分子引发剂,Cu Br/PMDETA为催化体系,通过本体聚合制备出大分子引发剂聚苯乙烯(PS-Br)。再以PS-Br为引发剂引发第二单体甲基丙烯酸二甲氨基乙酯(DMAEMA)的本体聚合,得到PS-b-PDMAEMA-Br二嵌段共聚物,接着用PS-b-PDMAEMA-Br分别引发第三单体甲基丙烯酸甲酯(MMA)和甲基丙烯酸叔丁酯(t BMA)的本体聚合,得到三嵌段共聚物PS-b-PDMAEMA-b-Pt BMA,运用GPC、1H-NMR以及FTIR等对三嵌段共聚物进行表征;最后通过酸性水解得到PS-b-PDMAEMA-b-PMAA两亲性嵌段共聚物,并初步探究其表面活性。结果表明所得两亲性三嵌段共聚物具有一定的降低表面张力的能力,但弱于硬脂酸类小分子表面活性剂。  相似文献   

17.
以端羟基聚乳酸(PLA)、聚己二酸-丁二醇-尿素(PBAu)为预聚物,六亚甲基二异氰酸酯(HDI)为扩链剂,制备出一种新型PLA/PBAu嵌段共聚物。研究了扩链剂用量、扩链温度以及催化剂用量对PLA/PBAu嵌段共聚物分子量的影响,确定了合成PLA/PBAu嵌段共聚物的最佳工艺条件。采用核磁共振、凝胶渗透色谱、差示扫描量热仪、扫描电镜等对共聚物薄膜结构及性能进行表征。结果表明:成功合成了PLA/PBAu嵌段共聚物,分子量可达10×10~4,玻璃化转变温度约为41℃;并且随着PBAu含量的增加,共聚物的结晶度逐渐增加。以NaOH溶液为模拟液进行加速降解实验发现,当PBAu含量为30%时,可以显著提高嵌段共聚物的降解速率,并且通过调节PLA、PBAu预聚物的含量,可以控制嵌段共聚物的降解速率。  相似文献   

18.
分别以聚乙二醇(PEG)及聚乙二醇单甲醚(m PEG)引发L-丙交酯开环聚合得到PLLA(聚乳酸)-PEG-PLLA三嵌段与PLLA-m PEG两嵌段共聚物,通过1H-NMR分析确定共聚物的结构及分子量。采用直接溶解法和有机溶剂挥发法制备PLLA-PEG-PLLA及PLLA-m PEG胶束,并用TEM对其形态进行表征。利用激光粒度分析和染料探针的方法证实了共聚物自组装形成了胶束,且具有较小的临界胶束浓度(CMC),粒径约为100 nm。三嵌段PLLA-PEG-PLLA胶束的粒径小于两嵌段PLLA-m PEG胶束的粒径;有机溶剂挥发法制备的胶束粒径小于直接溶解法制备的胶束粒径。盐酸乌拉地尔胶束的体外释放结果表明,共聚物组成以及载药方式等对胶束载药、释药行为有一定影响,胶束对所包载的盐酸乌拉地尔具有明显的缓释作用。  相似文献   

19.
PET与PEG嵌段共聚物合成及应用的研究   总被引:5,自引:0,他引:5  
将聚酯(PET)和聚乙二醇(PEG)进行嵌段共聚,制得PET-PEG 嵌段共聚物,以PEG 加入比例为25% 的共聚物作改性剂,与CDP共混纺丝,所制纤维的抗静电性、染色性和吸湿性均得到改善  相似文献   

20.
国外动态     
环氧化苯乙烯—丁二烯嵌段共聚物苯乙烯-丁二烯嵌段共聚物是一种能用热塑性塑料加工成型的聚合物材料,但耐油耐溶剂性能很差。phillips石油公司为了改进苯乙烯-丁二烯嵌段共聚物的耐油性能,在甲苯和环己烷溶液中以过甲酸就地氧化,得到氧含量为8%的环氧化聚合物。大大地改进了苯乙烯-丁二烯对ASTM油的耐油性,并能和碳黑混合。其未硫化的胶料在ASTM油  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号