首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We prepared highly ordered titanium dioxide nanotube arrays (TNAs) by anodizing Ti foils in F containing electrolyte. The thickness and dye loading amount of TNAs were 26 μm and 1.06 × 10−7 mol cm−2, respectively. TiO2 nanoparticles (TNPs) were electrophoretically deposited on the inner wall of nanotube to produce coated nanotube arrays (TNAP). The dye loading was increased to 1.56 × 10−7 mol cm−2, and the electron transport rate improved. TNAs and TNAP were sensitized with ruthenium dye N3 to yield dye-sensitized TiO2 nanotube solar cells. The power conversion efficiency of TNA-based dye-sensitized solar cells (DSSCs) was 4.28%, whereas the efficiency of TNAP-based DSSCs increased to 6.28% when illuminated from the counter electrode. The increase of power conversion efficiency of TNAP-based DSSCs is ascribed to the increased surface area of TNAs and the faster electron transport rate.  相似文献   

2.
Ke Fan  Bo Chai  Ke Dai 《Electrochimica acta》2010,55(18):5239-5244
The dye-sensitized solar cells (DSSCs) using Ti foil supporting substrate for fabricating nanocrystalline TiO2 flexible film electrodes were developed, intending to improve the photoelectrochemical properties of flexible substrate-based DSSCs. The obtained cells were characterized by electrochemical impedance spectra (EIS), open circuit voltage decay (OCVD) measurement and Tafel plots. The experimental results indicate that the most important advantage of a Ti foil-based TiO2 flexible electrode over a FTO glass-based electrode lies in its reduced sheet resistance, electron traps, and the retarded back reaction of electrons with tri-iodine ions in DSSCs. All above characteristics for the Ti substrate TiO2 films are beneficial for decreasing the charge recombination in the TiO2 electrode and prolonging the electron lifetimes for the DSSCs, as well as improvement of the overall solar conversion efficiency. The photocurrent of the cell fabricated with the Ti foil-based flexible electrode increased significantly, leading to a much higher overall solar conversion efficiency of 5.45% at 100 mW/cm2 than the cell made with FTO glass-based TiO2 electrodes. Above results demonstrate that Ti foil is a potential alternative to the conventional FTO glass substrate for the DSSCs.  相似文献   

3.
This work presents large-scale dye-sensitized solar cells and methods for their manufacture. A dye-sensitized solar cell device contains a photosensitive dye adsorbed on a large surface of the anode, and a transparent conductive cathode disposed opposite the anode, wherein platinum nano-catalytic particles adhere to its surface, and an electrolytic solution is sealed between the anode and the transparent conductive cathode. A titania nanotube film was fabricated by thermo-spraying titanium film on 304 stainless-steel substrate. The photo-current conversion efficiency was tested under an AM 1.5 solar simulator. The dye-sensitized solar cell device has a short current density of 8.22 mA cm–2, open voltage of 0.71 V, fill factor of 0.59, and conversion efficiency of 3.4%. The internal impedance of the dye-sensitized solar cell was detected and simulated using an electrical impedance spectra technique with inductance, resistance, and capacitance characteristics. The stainless-steel/titania, titania/electrolyte, electrolyte, and electrolyte/(platinum/indium tin oxide) interfaces were simulated using an resistor–capacitor parallel circuit, and bulk materials such as stainless steel, tin doped indium oxide, and conducting wire were simulated by using a series of resistors and inductance.  相似文献   

4.
Cr-doped blue TiO2 (Cr-BTiO2) nanoparticles were fabricated at room temperature using lithium-ethylenediamine (Li-EDA) as reducing agent. The addition of Li-EDA promotes the selective reduction of the rutile phase of TiO2 into the amorphous phase keeping anatase phase unaltered. Hence, the phase-selective reduction of TiO2 leads to the formation of blue TiO2 nanoparticles. Synthesized samples were characterized by equipment fitted with modern technology. The shifting of (101) peak to a lower angle (2θ) in Cr-BTiO2 in X-ray diffraction (XRD) pattern suggests the successful doping of chromium into TiO2 lattices. In Raman spectra, the shifting of the active Eg peak of Cr-BTiO2 nanoparticles to higher wavenumber also suggests the successful substitution of Ti by Cr. The blue TiO2 and Cr-BTiO2 show increased absorption of light in the visible region compared to TiO2 (P25). The modified TiO2 samples have improved electron-hole separation tendency as predicted by the photoluminescence spectra (PL). Also, doping of Cr- into TiO2 lattice results the formation of oxygen vacancy as detected by X-ray photoelectron spectroscopy (XPS). Among all samples, Cr-BTiO2 demonstrated improvement in Jsc and overall incident photon to current conversion efficiency. Therefore, the synthetic effect is thus responsible for the enhancement in efficiency of Cr-BTiO2 towards the dye-sensitized solar cell (DSSC) by 2.5 and 1.5 times higher than the P25 and blue TiO2, respectively.  相似文献   

5.
A flexible dye-sensitized solar cell (DSSC) was fabricated using a photoanode consisting of an array of TiO2 nanotubes (TNT) filled with a nanocomposite of TiO2 (P90) and nanographite. The array of TNT was obtained by anodic oxidation of Ti foil, and this Ti foil with TNT was used as the photoanode of the DSSC. Each tube in the array has an average diameter of 100 nm. The morphologies of the array of TNT were obtained both after and before filling them with the TiO2/graphite nanocomposite, using a field-emission scanning electron microscopy (FE-SEM). DSSC with photoanode consisting of the nanocomposite (photoanode designated as Graphite/P90-TNT) rendered a light-to-electricity conversion efficiency (η) of 5.75%. In contrast, the cells with photoanodes consisting of only TNT (photoanode designated as TNT) and TNT filled with P90-TiO2 (photoanode designated as P90-TNT) exhibited efficiencies (η) of 4.44% and 5.14%, respectively. The enhancements in the η’s in favor of the cells with P90-TNT and Graphite/P90-TNT were attributed to the filled P90 and nanocomposite, respectively. The filled particles were assumed to provide more conductive pathways for electron transfer and prolonged lifetime for electrons in the film of TNT. The results were substantiated by light-absorption values, incident-photo-to-current efficiency (IPCE) curves, Nyquist and Bode plots of electrochemical impedance spectroscopy (EIS), and photopotential transient curves.  相似文献   

6.
In this study, hybrid silica-conjugated TiO2 photoelectrodes were developed in order to enhance the efficiency of a dye-sensitized solar cell. The relative changes in surface crystallite size and chemical surface states of TiO2 composites were investigated by XRD, XPS, and UV-vis spectroscopy. Therein, the chemical compositions of the nanostructured photoelectrode surfaces were observed to significantly change when the glass powder Si atoms became chemically bonded with the Ti atoms on the photoelectrode surface without appreciable changes to the crystalline structure of TiO2. Furthermore, a significant conversion of Si-Ox into Si-O at the surface of the photoelectrode was observed following the addition of glass powder, which confirms the covalent bonding of Si and Ti atoms into Ti-O-Si. A maximum cell efficiency (η from 5.8% to 8.5%) was observed when 2 wt% of the low-temperature glass powder was added to the TiO2 with a constant amount of dye loading. This observed peak in solar cell efficiently is most likely due to an increase in light harvesting, which is a result of an enhancement of light scattering and the coordination between Ti and Si to establish a Ti-O-Si bond.  相似文献   

7.
Carbon nanotubes (CNTs) films have been successfully fabricated by electrophoretic deposition (EPD) technique and used as counter electrodes of dye-sensitized solar cells (DSSCs). The CNTs counter electrodes consisting of a large number of bamboo-like structures with defect-rich edge planes exhibit a highly interconnected network structure with high electrical conductivity and good catalytic activity. A high photovoltaic conversion efficiency of 7.03% is achieved for DSSCs based on the CNTs counter electrodes, which is comparable to the cell based on conventional Pt counter electrode at one sun (AM 1.5G, 100 mW cm−2). The results suggest that the present synthetic strategy provides a potential feasibility for the fabrication of low-cost flexible counter electrodes of DSSCs using a facile deposition technique from an environmentally “friendly” solution at low temperature.  相似文献   

8.
Efficient transfer of charges from a counter electrode to an electrolyte is a key process during the operation of dye-sensitized solar cells. Here, we develop a flexible counter electrode by electrochemical deposition of polyaniline nanofibers on graphitized polyimide carbon films for use in a tri-iodide reduction. As determined by the electrochemical impedance spectroscopy, the flexible counter electrode exhibited very low charge transfer resistance and series resistance. These results are due to the high electrocatalytic activity of the polyaniline nanofibers and the high conductivity of the flexible graphitized polyimide film. In combination with a dye-sensitized TiO2 photoelectrode and electrolyte, the photovoltaic device with the polyaniline counter electrode shows an energy conversion efficiency of 6.85% under 1 sun illumination. Short-term stability tests indicate that the photovoltaic device with the polyaniline counter electrode almost maintains its initial performance.  相似文献   

9.
We suggest a simple process to fabricate a hole-patterned TiO2 electrode for a solid-state dye-sensitized solar cell (DSSC) to enhance cell performance through interfacial properties of the electrode with the electrolyte with minimum dye loading. The method involves prepatterning of SU-8 photoresist on a conducting glass, followed by the deposition of a nanocrystalline TiO2 layer, calcination at 450 °C and characterization using scanning electron microscopy (SEM). Hole-patterned TiO2 photoelectrodes yielded better solar energy conversion efficiency per dye loading compared to a conventional non-patterned photoelectrode. For example, a 50 μm hole-patterned DSSC exhibited 4.50% conversion efficiency in the solid state, which is comparable to an unpatterned flat TiO2 photoelectrode (4.57%) however the efficiency per dye loading of the former (0.986%/g) was much greater than that of the latter (0.898%/g). The improvement was attributed to improved transmittance through the electrode as well as better interfacial properties between the electrolyte and electrode, as confirmed by UV-visible spectroscopy and electrochemical impedance (EIS) analysis.  相似文献   

10.
Nanocrystalline TiO2 films were prepared on flexible Ti-metal sheets by electrophoretic deposition followed by chemical treatment with tetra-n-butyl titanate (TBT) and sintering at 450 °C. X-ray diffraction (XRD) analysis indicates that TBT treatment led to the formation of additional anatase TiO2, which plays an important role in improving the interconnection between TiO2 particles, as well as the adherence of the film to the substrate, and in modifying the surface properties of the nanocrystalline particles. The effect of TBT treatment on the electron transport in the nanocrystalline films was studied by intensity-modulated photocurrent spectroscopy (IMPS). An increase in the conversion efficiency was obtained for the dye-sensitized solar cells with TBT-treated nanocrystalline TiO2 films. The cell performance was further optimized by designing nanocrystalline TiO2 films with a double-layer structure composed of a light-scattering layer and a transparent layer. The light-scattering effect of the double-layer nanocrystalline films was evaluated by diffuse reflectance spectra. Employing the double-layer nanocrystalline films as the photoelectrodes resulted in a significant improvement in the incident photo-to-current conversion efficiency of the corresponding cells due to enhanced solar absorption by light scattering. A high conversion efficiency of 6.33% was measured under illumination with 100 mW cm−2 (AM 1.5) simulated sunlight.  相似文献   

11.
Dye-sensitized solar cells based on a tantalum (Ta)-doped TiO2 thin film prepared by the hydrothermal method show a photovoltaic efficiency of 8.18%, which is higher than that of the undoped TiO2 thin film (7.40%). The Mott-Schottky plot indicates that the Ta-doped TiO2 photoanode shifts the flat band potential positively and increases the electron density. The positive shift of the flat band potential improves the driving force of injected electrons from the LUMO of the dye to the conduction band of TiO2. Furthermore, the increased electron density caused by the Ta-doped TiO2 improves the fill factor of the solar cell. The increased electron density accelerates the transfer rate of electrons in the Ta-doped TiO2 thin films by comparison to undoped films, which is confirmed by intensity-modulated photocurrent spectroscopy measurements.  相似文献   

12.
A novel polyblend electrolyte consisting of KI and I2 dissolved in a blending polymer of polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG) was prepared. The formation of I3 in the polymer electrolyte was confirmed by X-ray photoelectron spectroscopy (XPS) characterization. Due to the coordinating and plasticizing effect by PVP, the ionic conductivity of the polyblend electrolyte is enhanced. The highest ionic conductivity of 1.85 mS cm−1 for the polyblend electrolyte was achieved by optimizing the compositions as 40 wt.% PVP + 60 wt.% PEG + 0.05 mmol g−1 I2 + 0.10 mmol g−1 KI. Based on the polyblend electrolyte, a DSSC with fill factor of 0.59, short-circuit density of 9.77 mA cm−2, open-circuit voltage of 698 mV and light-to-electricity conversion efficiency of 4.01% was obtained under AM 1.5 irradiation (100 mW cm−2).  相似文献   

13.
The effect of lithium iodide (LiI: 0–85 wt%) on the electrochemical behavior of agarose-based polymer electrolytes for dye-sensitized solar cells (DSSC) was investigated. Fourier Transform Infrared Spectroscopy (FTIR) and scanning electronic microscopy (SEM) were employed to characterize the interactions between polymer matrix and salt and the morphology of the agarose electrolytes, respectively. From the AC impedance spectra study, it was determined that the conduction behavior of the agarose-based polymer electrolyte matches the “salt-in-polymer” like behavior of low LiI content (0–25 wt%) and “polymer-in-salt” like behavior of high LiI content (25–85 wt%). Detailed analysis of characteristic electrochemical processes occurring in DSSC with these agarose electrolytes was also obtained by employing the EIS technique. The impedance spectra showed that the electron lifetime of DSSC was shortened with increasing LiI concentration, while the charge transfer resistance and charge recombination resistance were reduced when LiI concentration was increased.  相似文献   

14.
Three different types of nanocrystalline, N-doped TiO2 electrodes were synthesized using several nitrogen dopants through wet methods. The obtained nanocrystalline, N-doped TiO2 electrodes possessed different crystallite sizes, surface areas, and N-doping amounts. Characterizations were performed to reveal the nitrogen-doping processes for the wet methods using ammonia, urea, and triethylamine as the nitrogen dopants. Additionally, a high conversion efficiency of 8.32% was achieved by the dye-sensitized solar cells, based on the N-doped TiO2 electrodes. For instance, in comparison with the commercial P25 (5.76%) and pure anatase TiO2 electrodes (7.14%), significant improvements (44% and 17%, respectively) in the efficiencies were obtained. The findings also indicated that the ammonia nitrogen dopant was more efficient than other two nitrogen dopants. The electron transports, electron lifetimes, and charge recombination in the dye-sensitized N-doped TiO2 solar cells also differed from those in the pure TiO2-based dye-sensitized solar cells (DSCs). Specifically, an enhanced photocurrent of ca. 36% in N-doped DSCs resulted from the synergistic effects of the high dye uptake and the efficient electron transport. Moreover, the relationship between charge and voltage revealed that less charge was needed to get a high open-circuit voltage in the N-doping films.  相似文献   

15.
Nanostructural TiO2 films with large surface areas were prepared by the combined process of graft polymerization and sol–gel for use in dye-sensitized solar cells (DSSCs). The surface of the TiO2 nanoparticles was first graft polymerized with photodegradable poly(methyl methacrylate) (PMMA) via atom transfer radical polymerization (ATRP), after which the particles were deposited onto a conducting glass. The PMMA chains were removed from the TiO2 films by UV irradiation to generate secondary pores, into which titanium isopropoxide (TTIP) was infiltrated. The TTIP was then converted into small TiO2 particles by calcination at 450 °C, as characterized by energy-filtering transmission electron microscopy (EF-TEM) and field emission scanning electron microscopy (FE-SEM). The nanostructural TiO2 films were used as a photoelectrode in solid-state DSSCs; the energy conversion efficiency was 5.1% at 100 mW/cm2, which was higher than the values achieved by the pristine TiO2 (3.8%) and nongrafted TiO2/TTIP photoelectrodes (3.3%). This performance enhancement is primarily due to the increased surface area and pore volume of TiO2 films, as revealed by the N2 adsorption–desorption isotherm.  相似文献   

16.
A low temperature (<150 °C) fabrication method for preparation of TiO2 porous films with high efficiency in dye-sensitized solar cells (DSSCs) has been developed. The Ti(IV) tetraisopropoxide (TTIP) was added to the paste of TiO2 nanoparticles to interconnect the TiO2 particles. The electrochemical impedance spectroscopy (EIS) technique was employed to quantify the charge transport resistance at the TiO2/dye/electrolyte interface (Rct2) and electron lifetime in the TiO2 film (τe) under different molar ratios of TTIP/TiO2 and also at various TiO2 thicknesses. It was found that the Rct2 decreased as the molar ratio increased from 0.02 to 0.08, however, it increased at a molar ratio of 0.2 due to the reduction in surface area for dye adsorption. In addition, the characteristic frequency peak shifted to lower frequency at a molar ratio of 0.08, indicating the longer electron lifetime. As for the thickness effect, TiO2 film with a thickness around 17 μm achieved the best cell efficiency. EIS study also confirmed that, under illumination, the smallest Rct2 was associated with a TiO2 thickness of 17 μm, with the Rct2 increased as the thickness of TiO2 film increased. In the Bode plots, the characteristic frequency peaks shifted to higher frequency when the thickness of TiO2 increased from 17.2 to 48.2 μm, indicating the electron recombination increases as the thickness of the TiO2 electrode increases.Finally, to make better use of longer wavelength light, 30 wt% of larger TiO2 particle (300 nm) was mixed with P25 TiO2 as light scattering particles. It effectively increased the short-circuit current density and cell conversion efficiency from 7.44 to 8.80 mA cm−2 and 3.75 to 4.20%, respectively.  相似文献   

17.
In this article, we grew zinc oxide (ZnO) samples with different morphologies, e.g. film, nanowire and nanosheet, with electrochemical deposition (ECD) by controlling the precursor concentration and the growth mechanism was also discussed. The morphology influence on the photovoltaic conversion efficiency of the dye-sensitized solar cells (DSSC) assembled with different ZnO photoanodes was investigated by measuring current density–voltage (JV) curve, quantum efficiency (QE) spectrum and electrochemical impedance spectrum (EIS). It was found that the DSSC constructed with ZnO nanowire array as photoanode can absorb more dye, improve the photon utilization rate and provide rapid collection channels for the photoexcited carriers. Therefore, the photovoltaic conversion efficiency of ZnO nanowire DSSC was improved.  相似文献   

18.
An investigation of surface-related traps in nanostructured TiO2 films modified by the incorporation of carbon powder was conducted by the potential-step chronoamperometric method. For the modification of the morphology and surface state of the nanoporous TiO2 electrode, the incorporation of carbon into the white TiO2 powder was accomplished. In the chronoamperometric data, all of the transients showed an initial fast phase (<1 s) followed by a slower phase which is related to the trap filling process. The trap-filling period of the carbon incorporated TiO2 film becomes longer, as the applied negative potential increases, due to the widely distributed traps induced by the increased surface area. Furthermore, the film capacitance was derived as a function of the applied bias by integrating the current to time curves of the chronoamperometric data. The accumulated charge of the carbon incorporated TiO2 film increases prominently in two regions. The dominant increase shown in the positive region (−0.7 to −0.9 V vs. Ag/AgCl at pH 13) of the flat band potential implies that the electron occupancy in the surface-related traps is increased. At a more negative potential (below −1.2 V vs. Ag/AgCl), electrons from the conduction band of the TiO2 film substantially influence the total current, thereby inducing an exponential increase in the current. Therefore, it is found that most of the traps are located in the positive region of the flat band potential, since the Fermi level of the nanostructured TiO2 film is positioned at −1.14 V vs. Ag/AgCl at pH 13. The trap sites in the sub-bandgap region of the TiO2 film are important in the electron transport of photoinjected electrons from dye molecules and partially charge recombination with redox electrolyte in operating dye-sensitized solar cell. The influence of charge trap formed by increased surface states on the electron transport and electron transfer was investigated by photovoltage and photocurrent transient measurements.  相似文献   

19.
TiO2/modified natural bentonite clay semiconductor, as a potential electrode of dye-sensitized solar cell, having a Ti:Si molar ratio of 85:15 was, for the first time, compared with pure TiO2 (commercial P25) electrode in terms of solar cell efficiency and characteristics. 4-Chloro-2,5-difluorobenzoic acid and 4-(chloromethyl)benzoyl chloride were added to the electrodes to increase light harvesting ability of natural dyes extracted from red cabbage, rosella, and blue pea. The results showed that the TiO2/clay semiconductor provided a higher surface area but a slightly lower efficiency than the pure TiO2. The best natural sensitizer was found to be the dye extracted from red cabbage. Besides, the 4-(chloromethyl)benzoyl chloride provided a higher short circuit current for the TiO2/clay semiconductor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号