首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The La0.7Mg0.25Ti0.05Ni2.975Co0.525 (AB3) alloy was modified with different contents of polyaniline (PANI) through ball milling. XRD, SEM and FTIR were used to characterize the properties of the AB3/x PANI composites (x=1, 2, 3 and 4 wt%). The effects of PANI on the electrochemical properties of AB3 alloy electrode were studied by charge–discharge, electrochemical impedance spectroscopy (EIS), linear polarization (LP) and potentiostatic discharge experiments. The XRD, SEM and FTIR results showed that ball milling did not change the characterizations of PANI and AB3 alloy but decreased the average particle size of AB3 alloy. The charge–discharge results indicated that the maximum discharge capacity of AB3 alloy electrode decreased with the addition of PANI. However, the discharge cycle stability of AB3/PANI composite electrodes increased firstly and then decreased with the increase in PANI content. The EIS and LP curves showed the same trends with the discharge cycle stability. The hydrogen diffusion coefficients of AB3/PANI composites were estimated from the potentiostatic discharge curves, indicated the opposite trend with the discharge cycle stability. When the PANI content was equal to 3 wt%, the AB3/PANI composite electrode exhibited an optimal electrochemical kinetic property.  相似文献   

2.
具有三维网络结构的NASICON型Na3V2(PO4)3材料,由于其稳定的电压平台,较高的理论容量(117 mA∙h/g),被视为一种具有良好应用前景的钠离子电池负极材料。采用溶剂热和进一步热处理的方式,获得石墨烯包封Na3V2(PO4)3的复合材料[Na3V2(PO4)3/G],有效提高了Na3V2(PO4)3的电子导电性。在0.01 ~ 3.00 V电压区间,0.2 C倍率进行测试时,Na3V2(PO4)3/G复合材料在230圈循环后,其放电比容量保持在100.9 mA∙h/g,容量保持率高达68.4%,即使在5 C倍率,其放电比容量仍可达65.2 mA∙h/g。然而,纯相Na3V2(PO4)3的放电比容量仅为47.4 mA∙h/g,容量保持率仅为44.7%,在5 C倍率时,其放电比容量仅为25.1 mA∙h/g,证实石墨烯包封结构能显著提升Na3V2(PO4)3的循环稳定性和倍率性能。  相似文献   

3.
表征生物质酸性氧化制备甲酸过程中木质素结构变化是木质素高值化利用的关键之一。以O2为氧化剂,对松木粉在NaVO3-DMSO-H2SO4体系中氧化生成甲酸进行研究,考察反应时间、催化剂和固液比对木质素结构变化的影响。采用高效液相色谱(HPLC)、傅里叶变换红外光谱(FT-IR)、凝胶渗透色谱(GPC)、气相色谱(GC)和二维异核单量子相干核磁光谱(2D-HSQC)对固体残渣和已溶解的木质素碎片进行分析。结果显示,在H2SO4浓度为0.7wt.%的NaVO3-DMSO-H2SO4体系中,当固液比为1∶50时,甲酸的碳摩尔收率为75.1%。在氧化解聚过程中,木质素通过断裂C—O键被降解形成125 ~ 900 g/mol之间的碎片,而且木质素碎片中的芳环结构被氧化成醌类结构。  相似文献   

4.
LiNi1/3Mn1/3Co1/3O2 prepared by a spray drying method exhibited poor cyclic performance when it was operated at rates of 0.5C and 2C in 3–4.6 V. A metal oxide (ZrO2, TiO2, and Al2O3) coating (3 wt%) could effectively improve its cyclic performance at both 0.5C and 2C. Electrochemical impedance spectroscopy (EIS) studies suggested that both the surface resistance and the charge transfer resistance of the bare LiNi1/3Mn1/3Co1/3O2 significantly increase after 100 cycles, whose origin is mainly related to the change in both the particle surface and electrode morphologies. The presence of a thin metal oxide layer could remarkably suppress the increase in the total resistance (sum of the surface resistance and the charge transfer resistance), which was attributed to the improvement in good cyclic performances.  相似文献   

5.
Layered LiAl1/3−xCoxNi1/3Mn1/3O2 (0  x  1/3) compounds were studied via the combination of computational and experimental approach. The calculated voltage curve of LiNi1/3Al1/3Mn1/3O2 compound is presented, indicating it is of great potential for a cathode material of lithium-ion batteries. Unfortunately, it was found that the LiNi1/3Al1/3Mn1/3O2 compound without impurity phase could not be synthesized via a sol–gel process. To obtain a layered compound without impurity phase, partial of Al is replaced by Co in LiNi1/3Al1/3Mn1/3O2 compound in this study. Layered LiAl1/3−xCoxNi1/3Mn1/3O2 (0  x  1/3) compounds were synthesized via sol–gel reaction at 900 °C under a oxygen stream. Single phase of the LiAl1/3−xCoxNi1/3Mn1/3O2 in 1/6  x  1/3 region could be prepared successfully. The discharge capacity and conductivity increased with an increase in the Co-substitution content. The enhancement of the conductivity and phase purity by the introduction of Co content shows profound influence on the performance of the LiAl1/3−xCoxNi1/3Mn1/3O2 compounds.  相似文献   

6.
通过低电压电泳沉积的方法在碳纳米管纤维(CNF)表面沉积多孔碳纳米管(CNTs),然后在其表面电化学沉积一层聚苯胺(PANI),得到CNTs@PANI三维多孔网络结构修饰的核-鞘型纤维电极材料。通过扫描电镜、透射电镜和拉曼光谱表征电极材料表面形貌和微观结构,并利用电化学工作站测试电化学性能,研究结果表明,沉积的多孔CNTs结构可以为PANI提供更多的氧化还原反应活性位点,而PANI也具有固定CNTs的作用,在电流密度为1 mA/cm2时,CNTs和PANI修饰的电极面积比电容达77.28 mF/cm2。以聚二甲基硅氧烷薄膜为基底、PVA-H3PO4为电解质制备的对称型固态柔性超级电容器在电流密度为0.25 mA/cm2时,面积比电容为61.25 mF/cm2,恒流充放电4000次后,电容值仍维持在80%,并且串联两个电容器可以点亮电压为1.8 V的LED灯泡。  相似文献   

7.
Surface reconstructed SrTiO3 nanocrystals were synthesized by a thermal treatment process in presence of NaBH4 and SrTiO3 nanocrystals. The surface reconstruction of SrTiO3 nanocrystals is attributed to the introduction of surface oxygen vacancies or Ti sites (such as Ti3+ and Ti2+) during the hydrogenation treatment process. The light absorption and the charge transfer ability of SrTiO3 nanocrystals are simultaneously enhanced due to surface oxygen vacancies or Ti sites (such as Ti3+ and Ti2+), which are beneficial to photocatalytic water splitting. Meanwhile, these defects also change the redox potential of the photocatalysts. Since there existed a synergistic effect between the three, the ratio of hydrogen to oxygen production was also regulated.  相似文献   

8.
Photocatalytic water splitting for hydrogen (H2) generation is a potential strategy to solve the problem of energy crisis and environmental deterioration. However, powder-like photocatalysts are difficult to recycle, and the agglomeration of particles would affect the photocatalytic activity. Herein, a direct Z-scheme CdS/WO3 composite photocatalyst was fabricated based on carbon cloth through a two-step process. With the support of carbon cloth, photocatalysts tend to grow uniformly for further applications. The experimental results showed that the H2 yield of adding one piece of CdS/WO3 composite material was 17.28 μmol/h, which was 5.5 times as compared to that of pure CdS-loaded carbon cloth material. A cycle experiment was conducted to verify the stability of the as-prepared material and the result demonstrated that the H2 generation performance of CdS/WO3 decreased slightly after 3 cycles. This work provides new ideas for the development of recyclable photocatalysts and has a positive significance for practical applications.  相似文献   

9.
LiAlH4 doped with LaCl3 additives were studied by PCT experiment and X-ray diffraction (XRD). Doping with 1 mol% LaCl3 resulted in a great decrease in the amount of hydrogen release associated with the first and second dehydrogenation steps. Increasing the amount of LaCl3 from 1 to 6 mol% caused such marked changes in behavior that the total amount of hydrogen release increased first and then decreased. The study on the first rehydrogenation cycle showed that LiAlH4 doped with 2 mol% LaCl3 presents the greatest absorption of hydrogen of about 0.8 wt%. The results from XRD spectra analysis indicated the reversibility of Li3AlH6.  相似文献   

10.
This paper describes low temperature thin film Si growth by remote plasma chemical vapor deposition system for photovoltaic device applications. Using CaF2/glass substrate, we were able to achieve an improved μc-Si film at a low process temperature of 300°C. The μc-Si film on CaF2/glass substrate shows that a crystalline volume fraction of 65% and dark conductivity of 1.65×10−8 S/cm with the growth conditions of 50 W, 300°C, 88 mTorr, and SiH4/H2=1.2%. XRD analysis on μc-Si/CaF2/glass showed crystalline film growth in (1 1 1) and (2 2 0) planes. Grain size was enlarged as large as 700 Å for a μc-Si/CaF2/glass structure. Activation energy of μc-Si film was given as 0.49 eV. The μc-Si films exhibited dark- and photo-conductivity ratio of 124.  相似文献   

11.
The steam treatment effect has been investigated over the doubly impregnated catalyst, Ni/Ce–ZrO2/θ-Al2O3, in steam methane reforming (SMR). The catalyst was remarkably deactivated by steam treatment but reversibly regenerated by H2-reduction. XRD results showed that the steam treatment resulted in the formation of NiAl2O4 which is inactive for SMR but it was reversibly converted to Ni by the reduction. The reversible oxidation-reduction of Ni state was also evidenced by XPS and it was observed that the formation of NiAl2O4 is more favorable at higher temperature. It is most likely that the alumina support is only partially covered with Ce–ZrO2 and most Ni directly interacts with θ-Al2O3 which would probably make easy formation of NiAl2O4 in the presence of steam alone. The results imply that, during the start-up procedure in SMR, too high concentration of steam could deactivate seriously Al2O3 supported Ni catalysts.  相似文献   

12.
Thermogravimetry was used to study the oxidation of aluminum powders at elevated temperatures. Aluminum powders of various particle sizes and surface morphologies were heated in oxygen up to 1500 °C at different heating rates. Partially oxidized samples were recovered from selected intermediate temperatures and the oxide phases present were analyzed by X-ray diffraction. The experimental data were related to current information on stabilities and phase changes of Al2O3 polymorphs. Aluminum powders were observed to oxidize in four distinct stages in the temperature range from 300 to 1500 °C. During stage I, from 300 to about 550 °C, the thickness of the natural amorphous alumina layer on the particle surface increases. The rate of this process is controlled by the outward diffusion of Al cations. At about 550 °C, when the oxide layer thickness exceeds the critical thickness of amorphous alumina of about 4 nm, the oxide transforms into γ-Al2O3. The specific volume of γ-Al2O3 is less than that of amorphous alumina; therefore, the newly formed γ-Al2O3 only partially covers the aluminum surface. The oxidation rate increases rapidly at the onset of stage II, but it decreases when the γ-Al2O3 layer becomes continuous. During stage III oxidation, the γ-Al2O3 layer grows and partially transforms into the structurally similar θ-Al2O3 polymorph. Finally, oxidation stage IV is observed after the transition to stable -Al2O3 results in an abrupt reduction of oxidation rate. Qualitative analysis of the rates of oxidation at the different stages enables one to understand the wide range of aluminum ignition temperatures observed for particles of different sizes.  相似文献   

13.
利用静态熔融法制备了Li2CO3-Na2CO3(4∶6,质量比)二元熔盐.采用自制"自动热循环测试系统"测试了400~600 ℃内此二元熔盐1010次热循环,分析了其相变参数动态变化特性,利用DSC测试了其热稳定性,利用XRD分析了其化学组分.结果表明:"自动热循环测试系统"可以替代DSC定性测试相变材料的热循环稳定性;Li2CO3-Na2CO3二元熔盐熔化/凝固过程中主要以LiNaCO3形式存在,其峰值温度为499.1 ℃,其相变潜热为365.5J/g;热循环过程中,此二元熔盐的熔化和凝固温度变化不大,相变潜热最大降低了45.3J/g;通过XRD物相分析,可知整个循环过程中此二元熔盐的物相没有明显的变化.总之,Li2CO3-Na2CO3二元熔盐能够满足太阳能高温热发电和其它高温储热需求.  相似文献   

14.
LiNi0.5Co0.44Fe0.06VO4 cathode material has been synthesized by a citric acid:polyethylene glycol polymeric method at 723 K for 5 h in air. The surface of the LiNi0.5Co0.44Fe0.06VO4 was coated with various wt.% of Al2O3 by a wet chemical procedure and heat treated 873 K for 2 h in air. The samples were characterized by XRD, FTIR, SEM, and TEM techniques. XRD patterns expose that the complete crystalline phase occurred at 723 K and there was no indication of new peaks for the coated samples. FTIR spectra show that the complete removal of organic residues and the formation of LiNi0.5Co0.44Fe0.06VO4. TG/DTGA results reveal that the formation of LiNi0.5Co0.44Fe0.06VO4 occurred between 480 and 670 K and the complete crystalline occurred at 723 K. SEM micrographs show the various morphological stages of the polymeric intermediates. TEM micrographs of the pristine LiNi0.5Co0.44Fe0.06VO4 reveal that the particle size ranged from 130 to 150 nm and Al2O3 coating on the fine particles was compact and had an average thickness of about 15 nm. The charge–discharge experiments were carried out between 2.8 and 4.9 V (versus Li) at a current rate of 0.15 C. The 1.0 wt.% Al2O3 coated sample had the best electrochemical performance, with an initial capacity of 65 mAh g−1 and capacity retention of 60% after 50 cycles. The electrochemical impedance behavior suggests that the failure of pristine cathode performance is associated with an increase in the impedance growth on the surface of the cathode material upon continuous cycling.  相似文献   

15.
The solid solutions of CexSn1−xO2 incorporated with alumina to form CexSn1−xO2–Al2O3 mixed oxides, by the suspension/co-precipitation method, were used to prepare CuO/CexSn1−xO2–Al2O3 catalysts for the selective oxidation of CO in excess hydrogen. Incorporating Al2O3 increased the dispersion of CexSn1−xO2, but did not change their main structures and did not weaken their redox properties. Doping Sn4+ into CeO2 increased the mobility of lattice oxygen and enhanced the activity of the 7%CuO/CexSn1−xO2–Al2O3 catalyst in the selective oxidation of CO. The selective oxidation of CO was weakened as the doped fraction of Sn4+ exceeded 0.5. Incorporating appropriate amounts of Sn4+ and Al2O3 could obtain good candidates 7%CuO/CexSn1−xO2–Al2O3(20%), 1–x=0.1–0.5, for a preferential oxidation (PROX) unit in a polymer electrolyte membrane fuel cell system for removing CO. Its activity was comparable with, and its selectivity was much larger than, that of the noble catalyst 5%Pt/Al2O3.  相似文献   

16.
Ceramic systems of Bi2O3 and gadolinia-doped ceria (GDC) solid mixture were prepared as catalysts for direct methane oxidation. These systems were characterized by temperature-programmed reduction using hydrogen and carbon monoxide, temperature-programmed reaction of methane, fixed-temperature direct methane oxidation, and X-ray diffraction analysis. Adding Bi2O3 to GDC promotes both hydrogen and CO oxidation activities, because of the presence of surface Bi2O3 and the high content of mobile oxygen in Bi2O3. The reactivity of CO with surface lattice oxygen is enhanced to a higher extent than that of H2, and this enhanced extent shows a maximum in Bi2O3 content. Such a maximum also exists for the catalytic activity of direct methane oxidation. A synergistic effect occurs due to a combination of the high methane reactivity of GDC and the high content of mobile oxygen in Bi2O3. The CO2 selectivity of direct methane oxidation can be modulated by varying the Bi2O3 content. The mixing of Bi2O3 with GDC also increases the self-de-coking capability of the catalyst during direct methane oxidation, which stabilizes the activity.  相似文献   

17.
以ZIF-67作为金属有机框架(MOF),通过原位沉淀法生长在膨胀石墨片上对膨胀石墨进行改性,经过煅烧后形成Co3O4/EG分级多孔混合结构。为了优化硬脂酸的充放热性能,将Co3O4/EG与硬脂酸通过熔融共混和真空吸附法复合,制备出具有优异充放热性能的SA/Co3O4/EG复合相变材料。表征SA/Co3O4/EG复合相变材料的微结构、物相、相变焓值、相变温度和充放热时间等热物理性能,分析添加物Co3O4/EG的微结构对硬脂酸相变储热材料微结构和热性能产生的影响。添加物Co3O4/EG对SA/Co3O4/EG复合相变材料的相变温度影响较小,相变温度与Co3O4/EG添加量没有依赖关系。而复合储热材料的相变潜热随Co3O4/EG量的增加而减少,但与理论计算相差较少。Co3O4/EG分级多孔结构可以阻止Co3O4的团聚并提供高比表面积和孔体积吸附硬脂酸,多孔隙结构Co3O4和高热导率膨胀石墨(EG)的协同作用可以增加硬脂酸相变储热材料的热传递,缩短充放热时间,提高充放热效率。  相似文献   

18.
In this study, the electronic and photocatalytic properties of core-shell heterojunctions photocatalysts with reversible configuration of TiO2 and Bi2O3 layers were studied. The core-shell nanostructure, obtained by efficient control of the sol-gel polymerization and impregnation method of variable precursors of semiconductors, makes it possible to study selectively the role of the interfacial charge transfer in each configuration. The morphological, optical, and chemical composition of the core-shell nanostructures were characterized by high-resolution transmission electron microscopy, UV-visible spectroscopy and X-ray photoelectron spectroscopy. The results show the formation of homogenous TiO2 anatase and Bi2O3 layers with a thickness of around 10 and 8 nm, respectively. The interfacial charge carrier dynamic was tracked using time resolved microwave conductivity and transition photocurrent density. The charge transfer, their density, and lifetime were found to rely on the layout layers in the core-shell nanostructure. In optimal core-shell design, Bi2O3 collects holes from TiO2, leaving electrons free to react and increase by 5 times the photocatalytic efficiency toward H2 generation. This study provides new insight into the importance of the design and elaboration of optimal heterojunction based on the photocatalyst system to improve the photocatalytic activity.  相似文献   

19.
In this paper, a photoelectrocatalytic (PEC) recovery of toxic H2S into H2 and S system was proposed using a novel bismuth oxyiodide (BiOI)/ tungsten trioxide (WO3) nano-flake arrays (NFA) photoanode. The BiOI/WO3 NFA with a vertically aligned nanostructure were uniformly prepared on the conductive substrate via transformation of tungstate following an impregnating hydroxylation of BiI3. Compared to pure WO3 NFA, the BiOI/WO3 NFA promotes a significant increase of photocurrent by 200%. Owing to the excellent stability and photoactivity of the BiOI/WO3 NFA photoanode and I/I 3 catalytic system, the PEC system toward splitting of H2S totally converted S2– into S without any polysulfide ( Sx n) under solar-light irradiation. Moreover, H2 was simultaneously generated at a rate of about 0.867 mL/(h·cm). The proposed PEC H2S splitting system provides an efficient and sustainable route to recover H2 and S.  相似文献   

20.
以Li(Ni1/3Co1/3Mn1/3)O2/graphite动力电池为研究对象,在模拟备用电源工况下对动力电池进行交流阻抗测试。通过建立等效电路来研究欧姆阻抗Rs、电荷传递阻抗Rct和扩散阻抗CPEW随不同搁置时间、荷电状态(state of charge,SOC)的变化规律,研究Li(Ni1/3Co1/3Mn1/3)O2/graphite动力电池在备用电源工况下,容量和阻抗的变化趋势。结果表明:随着搁置时间的增加,电池容量衰减1.7%左右。随着搁置时间的增加,不同SOC下的欧姆阻抗Rs具有相同的变化趋势,电荷传递阻抗明显增加。随着SOC的降低,由双电层产生的电荷传递阻抗在逐渐增加。在SOC=0%时,扩散阻抗随搁置时间的增加而增加,在SOC=100%、50%的扩散阻抗有细微的增加。容量衰退和阻抗结果显示出Li(Ni1/3Co1/3Mn1/3)O2/graphite动力电池可以很好地在备用电源工况上使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号