首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
P(t,n)和C(t,n)分别表示在阶为n的路和圈中添加t条边后得到的图的最小直径;f(t,k)表示从直径为k的图中删去t条边后得到的连通图的最大直径.这篇文章证明了t≥4且n≥5时,P(t,n)≤(n-8)/(t 1) 3;若t为奇数,则C(t,n)≤(n-8)/(t 1) 3;若t为偶数,则C(t,n)≤(n-7)/(t 2) 3.特别地,「(n-1)/5」≤P(4,n)≤「(n 3)/5」,「n/4」-1≤C(3,n)≤「n/4」.最后,证明了:若k≥3且为奇数,则f(t,k)≥(t 1)k-2t 4.这些改进了某些已知结果.  相似文献   

2.
In this paper, using the method of Picard-Fuchs equation and Riccati equation, we consider the number of zeros for Abelian integrals in a kind of quadratic reversible centers of genus one under arbitrary polynomial perturbations of degree $n$, and obtain that the upper bound of the number is $2\left[{(n+1)}/{2}\right]+$ $\left[{n}/{2}\right]+2$ ($n\geq 1$), which linearly depends on $n$.  相似文献   

3.
For p>1,many improved or generalized results of the well-known Hardy's inequality have been established.In this paper,by means of the weight coefficient method,we establish the following Hardy type inequality for P=-1:n∑i=1(1/ii∑j=1aj)-1<2n∑i=1(1-π2-9/3i)ai-1,Cn such that the inequality ∑ni=1(1/i∑ij=1 aj)-1≤Cn∑ni=1ai-1 holds.Moreover,by means of the Mathematica software,we give some examples.  相似文献   

4.
In this paper, we are concerned with the properties of positive solutions of the following nonlinear integral systems on the Heisenberg group $\mathbb{H}^n$, \begin{equation} \left\{\begin{array}{ll} u(x)=\int_{\mathbb{H}^n}\frac{v^{q}(y)w^{r}(y)}{|x^{-1}y|^\alpha|y|^\beta}\,dy,\\ v(x)=\int_{\mathbb{H}^n}\frac{u^{p}(y)w^{r}(y)}{|x^{-1}y|^\alpha|y|^\beta}\,dy,\\ w(x)=\int_{\mathbb{H}^n}\frac{u^{p}(y)v^{q}(y)}{|x^{-1}y|^\alpha|y|^\beta}\,dy,\\ \end{array}\right.\end{equation} for $x\in \mathbb{H}^n$, where $0<\alpha 1$ satisfying $\frac{1}{p+1} $+ $\frac{1}{q+1} + \frac{1}{r+1} = \frac{Q+α+β}{Q}.$ We show that positive solution triples $(u,v,w)\in L^{p+1}(\mathbb{H}^n)\times L^{q+1}(\mathbb{H}^n)\times L^{r+1}(\mathbb{H}^n)$ are bounded and they converge to zero when $|x|→∞.$  相似文献   

5.
Let B  R~n be the unit ball centered at the origin. The authors consider the following biharmonic equation:{?~2u = λ(1 + u)~p in B,u =?u/?ν= 0 on ?B, where p n+4/ n-4and ν is the outward unit normal vector. It is well-known that there exists a λ* 0 such that the biharmonic equation has a solution for λ∈ (0, λ*) and has a unique weak solution u*with parameter λ = λ*, called the extremal solution. It is proved that u* is singular when n ≥ 13 for p large enough and satisfies u*≤ r~(-4/ (p-1)) - 1 on the unit ball, which actually solve a part of the open problem left in [D`avila, J., Flores, I., Guerra, I., Multiplicity of solutions for a fourth order equation with power-type nonlinearity, Math. Ann., 348(1), 2009, 143–193] .  相似文献   

6.
We study the following mean field equation$$\Delta_{g}u+\rho\left(\frac{e^{u}}{\int_{\mathbb{S}^{2}}e^{u}d\mu}-\frac{1}{4\pi}\right)=0\ \ \mbox{in}\ \ \mathbb{S}^{2},$$where $\rho$ is a real parameter. We obtain the existence of multiple axially asymmetric solutions bifurcating from $u=0$ at the values $\rho=4n(n+1)\pi$ for any odd integer $n\geq3$.  相似文献   

7.
Let $M^{n}(n\geq4)$ be an oriented compact submanifold with parallel mean curvature in an $(n+p)$-dimensional complete simply connected Riemannian manifold $N^{n+p}$. Then there exists a constant $\delta(n,p)\in(0,1)$ such that if the sectional curvature of $N$ satisfies $\ov{K}_{N}\in[\delta(n,p), 1]$, and if $M$ has a lower bound for Ricci curvature and an upper bound for scalar curvature, then $N$ is isometric to $S^{n+p}$. Moreover, $M$ is either a totally umbilic sphere $S^n\big(\frac{1}{\sqrt{1+H^2}}\big)$, a Clifford hypersurface $S^{m}\big(\frac{1}{\sqrt{2(1+H^2)}}\big)\times S^{m}\big(\frac{1}{\sqrt{2(1+H^2)}}\big)$ in the totally umbilic sphere $S^{n+1}\big(\frac{1}{\sqrt{1+H^2}}\big)$ with $n=2m$, or $\mathbb{C}P^{2}\big(\frac{4}{3}(1+H^2)\big)$ in $S^7\big(\frac{1}{\sqrt{1+H^2}}\big)$. This is a generalization of Ejiri''s rigidity theorem.  相似文献   

8.
Let P(z) be a polynomial of degree n which does not vanish in |z| k, k ≥ 1.It is known that for each 0 ≤ s n and 1 ≤ R ≤ k,M (P~(s), R )≤( 1/(R~s+ k~s))[{d~((s)/dx(s))(1+x~n)}_(x=1)]((R+k)/(1+k))~nM(P,1).In this paper, we obtain certain extensions and refinements of this inequality by involving binomial coefficients and some of the coefficients of the polynomial P(z).  相似文献   

9.
The Catalan numbers $1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862,\ldots$ are given by $C(n)=\frac{1}{n+1}\binom{2n}{n}$ for $n\geq 0$. They are named for Eugene Catalan who studied them as early as 1838. They were also found by Leonhard Euler (1758), Nicholas von Fuss (1795), and Andreas von Segner (1758). The Catalan numbers have the binomial generating function $$\mathbf{C}(z) = \sum_{n=0}^{\infty}C(n)z^n = \frac{1 - \sqrt{1-4z}}{2z}$$ It is known that powers of the generating function $\mathbf{C}(z)$ are given by $$\mathbf{C}^a(z) = \sum_{n=0}^{\infty}\frac{a}{a+2n}\binom{a+2n}{n}z^n.$$ The above formula is not as widely known as it should be. We observe that it is an immediate, simple consequence of expansions first studied by J. L. Lagrange. Such series were used later by Heinrich August Rothe in 1793 to find remarkable generalizations of the Vandermonde convolution. For the equation $x^3 - 3x + 1 =0$, the numbers $\frac{1}{2k+1}\binom{3k}{k}$ analogous to Catalan numbers occur of course. Here we discuss the history of these expansions. and formulas due to L. C. Hsu and the author.  相似文献   

10.
Let P(G,λ) be the chromatic polynomial of a simple graph G. A graph G is chromatically unique if for any simple graph H, P(H,λ) = P(G,λ) implies that H is isomorphic to G. Many sufficient conditions guaranteeing that some certain complete tripartite graphs are chromatically unique were obtained by many scholars. Especially, in 2003, Zou Hui-wen showed that if n 31m2 + 31k2 + 31mk+ 31m? 31k+ 32√m2 + k2 + mk, where n,k and m are non-negative integers, then the complete tripartite graph K(n - m,n,n + k) is chromatically unique (or simply χ-unique). In this paper, we prove that for any non-negative integers n,m and k, where m ≥ 2 and k ≥ 0, if n ≥ 31m2 + 31k2 + 31mk + 31m - 31k + 43, then the complete tripartite graph K(n - m,n,n + k) is χ-unique, which is an improvement on Zou Hui-wen's result in the case m ≥ 2 and k ≥ 0. Furthermore, we present a related conjecture.  相似文献   

11.
Let γ*(D) denote the twin domination number of digraph D and let Cm Cn denote the Cartesian product of C_m and C_n, the directed cycles of length m, n ≥ 2. In this paper, we determine the exact values: γ*(C_2?C_n) = n; γ*(C_3 ?C_n) = n if n ≡ 0(mod 3),otherwise, γ*(C_3?C_n) = n + 1; γ*(C_4?C_n) = n + n/2 if n ≡ 0, 3, 5(mod 8), otherwise,γ*(C_4?C_n) = n + n/2 + 1; γ*(C_5?C_n) = 2n; γ*(C_6?C_n) = 2n if n ≡ 0(mod 3), otherwise,γ*(C_6?C_n) = 2n + 2.  相似文献   

12.
This paper considers the following Cauchy problem for semilinear wave equations in n space dimensions □φ=F(δφ),φ(0,x)=f(x),δtφ(0,x)=g(x),whte □=δt^2-△ is the wave operator,F is quadratic in δεφ with δ=(δt,δx1,…,δxn).The minimal value of s is determined such that the above Cauchy problem is locally wellposed in H^s.It turns out that for the general equation s must satisfy s&gt;max(n/2,n+5/4).This is due to Ponce and Sideris (when n=3)and Tataru (when n≥5).The purpose of this paper is to supplement with a proof in the case n=2,4.  相似文献   

13.
This paper considers the following Cauchy problem for semilinear wave equations in $n$ space dimensions $$\align \square\p &=F(\partial\p ),\\p (0,x)&=f(x),\quad \partial_t\p (0,x)=g(x), \endalign$$ where $\square =\partial_t^2-\triangle$ is the wave operator, $F$ is quadratic in $\partial\p$ with $\partial =(\partial_t,\partial_{x_1},\cdots ,\partial_{x_n})$. The minimal value of $s$ is determined such that the above Cauchy problem is locally well-posed in $H^s$. It turns out that for the general equation $s$ must satisfy $$s>\max\Big(\frac{n}{2}, \frac{n+5}{4}\Big).$$ This is due to Ponce and Sideris (when $n=3$) and Tataru (when $n\ge 5$). The purpose of this paper is to supplement with a proof in the case $n=2,4$.  相似文献   

14.
对任意的正整数与集合,令为解的个数.杨全会和陈永高证明了:若整数且,则不存在集合使得对所有充分大的整数成立,其中.对整数和,定义为满足对所有整数成立的集合的个数.杨全会和陈永高证明了是有限的,且.同时,他们问对任意整数,是否存在使得对所有整数成立.在本文中,我们给出了在时的准确公式.从而推出在时成立.  相似文献   

15.
本文证明了自正则化Davis大数律和重对数律的精确渐近性, 即 {\heiti\bf 定理1}\hy 设$\ep X=0$, 且$\ep X^2I_{(|X|\leq x)}$在无穷远处是缓变函数, 则$\lim_{\varepsilon\searrow0}\varepsilon^2\tsm_{n\geq3}\frac{1}{n\log n}\pr\Big(\Big|\frac{S_n}{V_n}\Big|\geq\varepsilon\sqrt{\log\log n}\Big)=1.${\heiti\bf 定理2}\hy 设$\ep X=0$, 且$\ep X^2I_{(|X|\leq x)}$在无穷远处是缓变函数, 则对本文证明了目正则化Davis大数律和重对数律的精确渐近性,即定理1设EX=0,且EX~2I_(|x|≤x)在无穷远处是缓变函数,则■定理2设EX=0,且EX~2I_(|x|≤x)在无穷远处是缓变函数,则对0≤δ≤1,有■其中N为标准正态随机变量.  相似文献   

16.
We prove several numerical radius inequalities for certain 2 × 2 operator matrices. Among other inequalities, it is shown that if X, Y, Z, and W are bounded linear operators on a Hilbert space, then
$$w\left( \left[\begin{array}{cc} X &; Y \\ Z &; W \end{array} \right] \right) \geq \max \left(w(X),w(W),\frac{w(Y+Z)}{2},\frac{w(Y-Z)}{2}\right) $$
and
$$w\left( \left[\begin{array}{cc}X &; Y \\ Z &; W\end{array} \right] \right) \leq \max \left( w(X), w(W)\right)+\frac{w(Y+Z)+w(Y-Z)}{2}. $$
As an application of a special case of the second inequality, it is shown that
$$\frac{\left\Vert X\right\Vert }{2}+\frac{\left\vert \left\Vert\operatorname{Re}{X}\right\Vert -\frac{\left\Vert X\right\Vert}{2}\right\vert }{4}+\frac{ \left\vert \left\Vert \operatorname{Im}{X}\right\Vert -\frac{\left\Vert X\right\Vert}{2}\right\vert }{4} \leq w(X), $$
which is a considerable improvement of the classical inequality \({\frac{ \left\Vert X\right\Vert }{2}\leq w(X)}\) . Here w(·) and || · || are the numerical radius and the usual operator norm, respectively.
  相似文献   

17.
By using the methods of Picard-Fuchs equation and Riccati equation, we study the upper bound of the number of zeros for Abelian integrals in a kind of quadratic reversible centers of genus one under polynomial perturbations of degree $n$. We obtain that the upper bound is $7[(n-3)/2]+5$ when $n\ge 5$, $8$ when $n=4$, $5$ when $n=3$, $4$ when $n=2$, and $0$ when $n=1$ or $n=0$, which linearly depends on $n$.  相似文献   

18.
Let ∈ :N → R be a parameter function satisfying the condition ∈(k) + k + 1 > 0and let T∈ :(0,1] →(0,1] be a transformation defined by T∈(x) =-1 +(k + 1)x1 + k-k∈x for x ∈(1k + 1,1k].Under the algorithm T∈,every x ∈(0,1] is attached an expansion,called generalized continued fraction(GCF∈) expansion with parameters by Schweiger.Define the sequence {kn(x)}n≥1of the partial quotients of x by k1(x) = ∈1/x∈ and kn(x) = k1(Tn-1∈(x)) for every n ≥ 2.Under the restriction-k-1 < ∈(k) <-k,define the set of non-recurring GCF∈expansions as F∈= {x ∈(0,1] :kn+1(x) > kn(x) for infinitely many n}.It has been proved by Schweiger that F∈has Lebesgue measure 0.In the present paper,we strengthen this result by showing that{dim H F∈≥12,when ∈(k) =-k-1 + ρ for a constant 0 < ρ < 1;1s+2≤ dimHF∈≤1s,when ∈(k) =-k-1 +1ksfor any s ≥ 1where dim H denotes the Hausdorff dimension.  相似文献   

19.
We consider the Cauchy problem for the semilinear wave equation ${u_{tt} - \Delta u + V(x)u_t = |u|^p}$ .When ${V(x) = V_0(1 + |x|^2)^{-1/2}, V_0 \geq n}$ , we prove that the critical exponent for the problem is ${p_c(n)=\left\{\begin{array}{ll} 1+\frac{2}{n-1},& n \geq 2,\ +\infty,& n=1. \end{array}\right.}$   相似文献   

20.
Rigid frameworks in some Euclidean space are embedded graphs having a unique local realization (up to Euclidean motions) for the given edge lengths, although globally they may have several. We study the number of distinct planar embeddings of minimally rigid graphs with $n$ vertices. We show that, modulo planar rigid motions, this number is at most ${{2n-4}\choose {n-2}} \approx 4^n$. We also exhibit several families which realize lower bounds of the order of $2^n$, $2.21^n$ and $2.28^n$. For the upper bound we use techniques from complex algebraic geometry, based on the (projective) Cayley--Menger variety ${\it CM}^{2,n}(C)\subset P_{{{n}\choose {2}}-1}(C)$ over the complex numbers $C$. In this context, point configurations are represented by coordinates given by squared distances between all pairs of points. Sectioning the variety with $2n-4$ hyperplanes yields at most $deg({\it CM}^{2,n})$ zero-dimensional components, and one finds this degree to be $D^{2,n}=\frac{1}{2}{{2n-4}\choose {n-2}}$. The lower bounds are related to inductive constructions of minimally rigid graphs via Henneberg sequences. The same approach works in higher dimensions. In particular, we show that it leads to an upper bound of $2 D^{3,n}= {({2^{n-3}}/({n-2}})){{2n-6}\choose{n-3}}$ for the number of spatial embeddings with generic edge lengths of the $1$-skeleton of a simplicial polyhedron, up to rigid motions. Our technique can also be adapted to the non-Euclidean case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号