首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
肿瘤干细胞(Cancer stem cells,CSCs)是肿瘤组织中一小部分具有自我更新和致瘤性的细胞,具有特殊的耐药机制,与肿瘤的复发和治疗失败关系密切。微小RNA(microRNAs,miRNAs)是一类长度约为19~25个核苷酸的内源性非编码单链RNA,能够通过调控相关靶基因的表达,参与调控肿瘤干细胞增殖、凋亡、上皮-间质转化等重要的生命过程,引起CSCs对化疗药物产生原发性多药耐药性。本论文就miRNAs在调控CSCs多药耐药性方面的研究进展作一综述。  相似文献   

3.
A selected ion flow tube-chemical ionization mass spectrometric method is presented for the first determination of acrolein metabolically produced in biological tissues. Acrolein in aqueous samples (2.5 ml) is preconcentrated by distillation and directly analyzed using gas-phase proton transfer from H3O+. This method provides sensitive detection of acrolein with the method detection limit of 15 nM at the 99% confidence level. Detection is linear up to the highest concentration studied (13.5 microM, R2 = 0.998). Acrolein levels are determined in doxorubicin-sensitive (MCF-7) and doxorubicin-resistant (MCF-7/Adr) human breast cancer cells in vitro. The intracellular acrolein concentrations differ insignificantly: 0.61 microM for sensitive cells and 0.54 microM for resistant cells. Treatment with a physiological concentration of doxorubicin (0.5 microM) for 24 h at 37 degrees C increased acrolein levels by factors of 2.6 and 1.9 for MCF-7 and MCF-7/Adr cells, respectively. The differential enhancement observed is consistent with the lower levels of enzymes that neutralize oxidative stress in sensitive MCF-7 cells and overexpression of an active drug efflux pump P-170 glycoprotein in resistant MCF-7/Adr cells.  相似文献   

4.
    
Mesenchymal stem cells (MSCs) play an important role in chemoresistance. Exosomes have been reported to modify cellular phenotype and function by mediating cell-cell communication. In this study, we aimed to investigate whether exosomes derived from MSCs (MSC-exosomes) are involved in mediating the resistance to chemotherapy in gastric cancer and to explore the underlying molecular mechanism. We found that MSC-exosomes significantly induced the resistance of gastric cancer cells to 5-fluorouracil both in vivo and ex vivo. MSC-exosomes antagonized 5-fluorouracil-induced apoptosis and enhanced the expression of multi-drug resistance associated proteins, including MDR, MRP and LRP. Mechanistically, MSC-exosomes triggered the activation of calcium/calmodulin-dependent protein kinases (CaM-Ks) and Raf/MEK/ERK kinase cascade in gastric cancer cells. Blocking the CaM-Ks/Raf/MEK/ERK pathway inhibited the promoting role of MSC-exosomes in chemoresistance. Collectively, MSC-exosomes could induce drug resistance in gastric cancer cells by activating CaM-Ks/Raf/MEK/ERK pathway. Our findings suggest that MSC-exosomes have profound effects on modifying gastric cancer cells in the development of drug resistance. Targeting the interaction between MSC-exosomes and cancer cells may help improve the efficacy of chemotherapy in gastric cancer.  相似文献   

5.
    
Breast cancer is the most commonly diagnosed and the most lethal cancer in females both in China and worldwide. Currently, the origin of cancer stem cells, the heterogeneity of cancer cells, the mechanism of cancer metastasis and drug resistance are the most important issues that need to be addressed. Chinese investigators have recently made new discoveries in basic breast cancer researches, especially regarding cancer stem cells, cancer metabolism, and microenvironments. These efforts have led to a deeper understanding of drug resistance and metastasis and have also indicated new biomarkers and therapeutic targets. These findings emphasized the importance of the cancer stem cells for targeted therapy. In this review, we summarized the latest important findings in this field in China.  相似文献   

6.
7.
Histone H3 lysine 27 trimethylation (H3K27me3) catalyzed by the enzymatic subunit EZH2 in the Polycomb repressive complex 2 (PRC2) is essential for cells to ‘memorize’ gene expression patterns through cell divisions and plays an important role in establishing and maintaining cell identity during development. However, how the epigenetic mark is inherited through cell generations remains poorly understood. Recently, we and others demonstrate that CDK1 and CDK2 phosphorylate EZH2 at threonine 350 (T350) and that T350 phosphorylation is important for the binding of EZH2 to PRC2 recruiters, such as noncoding RNAs (ncRNAs) HOTAIR and XIST, and for the effective recruitment of PRC2 to EZH2 target loci in cells. These findings imply that phosphorylation of EZH2 by CDK1 and CDK2 may provide cells a mechanism that enhances EZH2 function during S and G2 phases of the cell cycle, thereby ensuring K27me3 on de novo synthesized H3 incorporated in nascent nucleosomes before sister chromosomes are divided into two daughter cells. Additionally, a potential role of T350 phosphorylation of EZH2 in differing EZH2 from its homolog EZH1 in catalyzing H3K27me3 as well as the interplay between phosphorylation at T350 and other residues (e.g. phosphorylation by p38 at threonine 372 (T372)) in governing EZH2 activity in proliferating versus non-dividing cells are also discussed. Together, CDK phosphorylation of EZH2 at T350 may represent a key regulatory mechanism of EZH2 function that is essential for the maintenance of H3K27me3 marks through cell divisions.  相似文献   

8.
    
Resistance to therapy and metastasis remains one of the leading causes of mortality due to cervical cancer despite advances in detection and treatment. The mechanism of epithelial to mesenchymal transition (EMT) provides conceptual explanation to the invasiveness and metastatic spread of cancer but it has not been fully understood in cervical cancer. This study aims to investigate the mechanism by which silencing of E-cadherin gene regulates EMT leading to proliferation, invasion, and chemoresistance of cervical cancer cells through the Hedgehog (Hh) signaling pathway. We developed an in vitro EMT model by the knockdown of E-cadherin expression in cervical cancer cell lines. To understand the role of developmental pathway like Hh in the progression of cervical cancer, we investigated the expression of Hh pathway mediators by array in E-cadherin low cervical cancer cells and observed upregulation of Hh pathway. This was further validated on low passage patient-derived cell lines and cervical carcinoma tissue sections from cervical cancer patients. Further, we evaluated the role of two inhibitors (cyclopamine and GANT58) of the Hh pathway on invasiveness and apoptosis in E-cadherin low cervical cancer cells. In conclusion, we observed that inhibition of Hh pathway with GANT58 along with current therapeutic procedures could be more effective in targeting drug-resistant EMT cells and bulk tumor cells in cervical cancer.  相似文献   

9.
10.
    
The use of the cytotoxic antibiotic doxorubicin (DOXR) is limited by its dose‐dependent cardiotoxicity. The aim of this study was to evaluate the cardioprotective effect of the combination of carvedilol (CARD) and liposomal resveratrol (LIPO RESV) against DOXR‐induced cardiomyopathy in rats. The results of the present study showed that DOXR administration significantly increased heart weight/body weight ratio by 35.6%, creatine kinase‐MB (CK‐MB) by 40.6%, troponin‐I levels by 85%, and decreased reduced glutathione level and superoxide dismutase activity by 47% and 52%, respectively compared to the control group. Moreover, cardiac caspase‐3 protein expression was upregulated by 51.6% vs the control group. In contrast, treatment of DOXR‐administered rats with CARD, RESV, or LIPO RESV and their combination for 6 weeks improved all the above‐mentioned measured parameters. In conclusion, concomitant administration of CARD and LIPO RESV exerted additive pharmacological effects in some measured parameters against DOXR‐induced cardiomyopathy and this may be a useful cardioprotective strategy.  相似文献   

11.
The efficacy of hepatocellular carcinoma (HCC) treatment is very low because of the high percentage of recurrence and resistance to anticancer agents. Hepatic cancer stem cells (HCSCs) are considered the origin of such recurrence and resistance. Our aim was to evaluate the stemness of doxorubicin and 5-fluorouracil resistant hepatic cancer cells and establish the new method to isolate the HCSCs from primary cultured HCC tumors. HCC biopsies were used to establish primary cultures. Then, primary cells were selected for HCSCs by culture in medium supplemented with doxorubicin (0, 0.1, 0.25, 0.5 or 1 μg/mL), 5-fluorouracil (0, 0.1, 0.25, 0.5 or 1 μg/mL) or their combination. Selection was confirmed by detection of HCSC markers such as CD133, CD13, CD90, and the side population was identified by rhodamine 123 efflux. The cell population with the strongest expression of these markers was used to evaluate the cell cycle, gene expression profile, tumor sphere formation, marker protein expression, and in vivo tumorigenesis. Selective culture of primary cells in medium supplemented with 0.5 μg/mL doxorubicin and 1 μg/mL 5-fluorouracil selected cancer cells with the highest stemness properties. Selected cells strongly expressed CD13, CD133, CD90, and CD326, efflux rhodamine 123 and formed tumor spheres in suspension. Moreover, selected cells were induced to differentiate into cells with high expression of CD19 and AFP (alpha-fetoprotein), and importantly, could form tumors in NOD/SCID mice upon injection of 1 × 105 cells/mouse. Selective culture with doxorubicin and 5-fluorouracil will enrich HCSCs, is an easy method to obtain HCSCs that can be used to develop better therapeutic strategies for patients with HCC, and particularly HCSC-targeting therapy.  相似文献   

12.
    
Bladder cancer is one of the most prevalent genitourinary cancers responsible for about 150,000 deaths per year worldwide. Currently, several treatments, such as endoscopic and open surgery, appended by local or systemic immunotherapy, chemotherapy, and radiotherapy are used to treat this malignancy. However, the differences in treatment outcome among patients suffering from bladder cancer are considered as one of the important challenges. In recent years, cancer stem cells, representing a population of undifferentiated cells with stem-cell like properties, have been eyed as a major culprit for the high recurrence rate in superficial papillary bladder cancer. Cancer stem cells have been reported to be resistant to conventional treatments, such as chemotherapy, radiation, and immunotherapy, which induce selective pressure on tumoral populations resulting in selection and growth of the resistant cells. Therefore, targeting the therapeutic aspects of cancer stem cells in bladder cancer may be promising. In this study, we briefly discuss the biology of bladder cancer and then address the possible relationship between molecular biology of bladder cancer and cancer stem cells. Subsequently, the mechanisms of resistance applied by cancer stem cells against the conventional therapeutic tools, especially chemotherapy, are discussed. Moreover, by emphasizing the biomarkers described for cancer stem cells in bladder cancer, we have provided, described, and proposed targets on cancer stem cells for therapeutic interventions and, finally, reviewed some immunotargeting strategies against bladder cancer stem cells.  相似文献   

13.
    
The anticancer drug doxorubicin induces the synthesis of nitric oxide, a small molecule that enhances the drug cytotoxicity and reduces the drug efflux through the membrane pump P‐glycoprotein (Pgp). Doxorubicin also induces the translocation on the plasma membrane of the protein calreticulin (CRT), which allows tumour cells to be phagocytized by dendritic cells. We have shown that doxorubicin elicits nitric oxide synthesis and CRT exposure only in drug‐sensitive cells, not in drug‐resistant ones, which are indeed chemo‐immunoresistant. In this work, we investigate the mechanisms by which nitric oxide induces the translocation of CRT and the molecular basis of this chemo‐immunoresistance. In the drug‐sensitive colon cancer HT29 cells doxorubicin increased nitric oxide synthesis, CRT exposure and cells phagocytosis. Nitric oxide promoted the translocation of CRT in a guanosine monophosphate (cGMP) and actin cytoskeleton‐dependent way. CRT translocation did not occur in drug‐resistant HT29‐dx cells, where the doxorubicin‐induced nitric oxide synthesis was absent. By increasing nitric oxide with stimuli other than doxorubicin, the CRT exposure was obtained also in HT29‐dx cells. Although in sensitive cells the CRT translocation was followed by the phagocytosis, in drug‐resistant cells the phagocytosis did not occur despite the CRT exposure. In HT29‐dx cells CRT was bound to Pgp and only by silencing the latter the CRT‐operated phagocytosis was restored, suggesting that Pgp impairs the functional activity of CRT and the tumour cells phagocytosis. Our work suggests that the levels of nitric oxide and Pgp critically modulate the recognition of the tumour cells by dendritic cells, and proposes a new potential therapeutic approach against chemo‐immunoresistant tumours.  相似文献   

14.
肿瘤干细胞及其耐药机制   总被引:3,自引:0,他引:3  
Ou Y  Guo XL 《生理科学进展》2007,38(2):115-119
肿瘤干细胞是存在于造血系统肿瘤和一些实体瘤中具有干细胞特性的细胞。肿瘤干细胞假说认为,经药物治疗后肿瘤复发和转移与肿瘤干细胞残存有密切关系。其原因可能是肿瘤干细胞高表达ABC转运蛋白和Bcl-2抗凋亡蛋白,同时其本身又具有一些干细胞特性。对肿瘤干细胞耐药机制的研究,将有助于发现新的肿瘤治疗靶点和更好的抗癌策略。  相似文献   

15.
Comment on: Vicente-Dueñas C, et al. Oncotarget 2012; Epub ahead of print; PMID:22408137.  相似文献   

16.
    
Osteosarcoma (OS) is one of the most common bone tumors in children and adolescents that cause a high rate of mortality in this age group and tends to be metastatic, in spite of chemotherapy and surgery. The main reason for this can be returned to a small group of malignant cells called cancer stem cells (CSCs). OS-CSCs play a key role in the resistance to treatment and relapse and metastasis through self-renewal and differentiation abilities. In this review, we intend to go through the different aspects of this malignant disease, including the cancer stem cell-phenotype, methods for isolating CSCs, signaling pathways, and molecular markers in this disease, and drugs showing resistance in treatment efforts of OS.  相似文献   

17.
18.
    
It has been shown in many clinical studies that the level of vascular endothelial growth factor-C (VEGF-C) positively correlates with lymph node metastasis. Nevertheless, beyond the canonical role of VEGF-C in stimulating lymphangiogenesis and thus promoting lymph node/distant metastasis, emerging evidence indicates that expression of VEGF-C contributes to various aspects of carcinogenicity via autocrine regulation. The newly identified functions of VEGF-C include but are not limited to proliferation, migration, invasion, and chemo-resistance. Besides tumor cell autocrine regulation, VEGF-C can also modulate the immune system such that tumor cells more easily escape immune surveillance. Therefore, understanding the functional roles and regulatory mechanisms related to the VEGF-C axis may lead to alternative strategies for cancer treatment. This mini-review will focus on summarizing recent discoveries regarding the unconventional functions of VEGF-C in cancer progression.  相似文献   

19.
胃癌是仅次于肺癌的第二大致死率癌症,尽管近年来对胃癌研究有了很大进展,但由于缺乏良好的动物模型,对胃癌的发病机理仍然不是很清楚.近年的研究表明,肿瘤组织不是由均一细胞构成的,其中存在一些少量细胞可以自我更新并可以分化为肿瘤组织的其他细胞,这类细胞具有类似成体组织干细胞(tissue stem cells)的特性称之为肿瘤干细胞(cancer stem cells).肿瘤干细胞被认为在肿瘤的生长、转移、复发中发挥着重要作用.有证据表明在胃癌组织中存在胃癌干细胞(gastric cancer stem cells),但是对胃癌干细胞的来源仍然不是十分明确.对肿瘤干细胞的研究有助于癌症的治疗,改变目前药物针对所有癌细胞的治疗策略.  相似文献   

20.
癌干细胞研究进展   总被引:15,自引:0,他引:15  
李锦军  顾健人 《生命科学》2006,18(4):333-339
关于肿瘤发生及发展的机制人们已探索多年,但由于肿瘤病因本身的复杂性、研究技术和知识积累不足等各种原因,研究进展缓慢。近些年来,癌干细胞的发现、确认和特性研究为肿瘤发病机制的揭示,乃至新型高效治疗策略的制定提出了新线索。许多研究成果显示,癌干细胞因具有自我更新和潜在的强增殖能力,在肿瘤发生发展、复发转移中均发挥着很重要的作用;肿瘤化疗的失败与肿瘤组织中癌干细胞的耐药性可能存在密切关系。本文就癌干细胞在这方面的研究进展及存在的问题作一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号