首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yu Y  Wang HY  Liu LN  Chen ZL  Xia GX 《Plant cell reports》2007,26(7):889-894
The molecular mechanisms controlling cytokinesis in plant cell division cycle remains largely unknown. In this study, a functional approach was taken to identify genes that may play roles in cytokinesis in tobacco BY-2 cells, using fission yeast as the host organism. A total of 22 BY-2 genes that perturbed the terminal stage of cell division when ectopically expressed in yeast cells were isolated, among which, several encode for uncharacterized genes. Additionally, RT-PCR analysis indicated that four of the isolated genes were expressed in a cell cycle-dependent manner. Our results demonstrate that fission yeast system can be efficiently used to identify the genes that may function, either positively or negatively, in the regulation of cytokinesis. More importantly, the candidate genes we have isolated in this work can provide useful information for unraveling the regulators controlling cell separation at the late stage of BY-2 cell division. Yi Yu and Hai-Yun Wang contributed equally to this work.  相似文献   

2.
3.
Although activation of A-type cyclin-dependent kinase (CDKA) is required for plant cell division, little is known about how CDKA is activated before commitment to cell division. Here, we show that auxin is required for the formation of active CDKA-associated complexes, promoting assembly of the complex in tobacco suspension culture Bright Yellow-2 (BY-2) cells. Protein gel blot analysis revealed that CDKA levels increased greatly after stationary-phase BY-2 cells were subcultured into fresh medium to re-enter the cell cycle. However, these increasing levels subsided when cells were subcultured into auxin-deprived medium, and a subtle increase was observed after subculturing into sucrose-deprived medium. Additionally, p13(suc1)-associated kinase activity did not increase significantly after subculturing into either auxin- or sucrose-deprived medium, but increased strongly after subculturing into medium containing both auxin and sucrose. Using gel filtration, we found that p13(suc1)-associated kinase activity against tobacco retinoblastoma-related protein was maximal in fractions corresponding to the molecular mass of the cyclin/CDKA complex. Interestingly, this peak distribution of high molecular-mass fractions of CDKA disappeared after cells were subcultured into auxin-deprived medium. These findings suggest an important role for auxin in the assembly of active CDKA-associated complexes.  相似文献   

4.
5.
Under specific experimental conditions, the formation of oblique cell plates was observed in tobacco BY-2 cells. Examination of this process, using an inverted microscope and immunofluorescence microscopy, revealed that the oblique cell plates were formed in cells that had double preprophase bands (PPBs). The formation of the oblique cell plates is discussed with a relationship to PPBs.  相似文献   

6.
The molecular links between cell cycle control and the regulation of programmed cell death are largely unknown in plants. Here we studied the relationship between the cell cycle and elicitor-induced cell death using synchronized tobacco BY-2 cells. Flow cytometry and fluorescence microscopy of nuclear DNA, and RNA gel-blot analyses of cell cycle-related genes revealed that the proteinaceous elicitor cryptogein induced cell cycle arrest at the G1 or G2 phase before the induction of cell death. Furthermore, the patterns of cell death induction and defence-related genes were different in different phases of the cell cycle. Constitutive treatment with cryptogein induced cell cycle arrest and cell death at the G1 or G2 phase. With transient treatment for 2 h, cell cycle arrest and cell death were only induced by treatment with the elicitor during the S or G1 phase. By contrast, the elicitor-induced production of reactive oxygen species was observed during all phases of the cell cycle. These results indicate that although recognition of the elicitor signal is cell cycle-independent, the induction of cell cycle arrest and cell death depends on the phase of the cell cycle.  相似文献   

7.
Seeds of the longcell mutant in maize (Zea mays L) have a defective-kernel phenotype: the embryo aborts at the early coleoptilar stage and the endosperm is reduced in size. Mutant embryos have severe alterations in morphogenesis. They have a suspensor-, an embryo axis- and a scutellum-like structure, but the shoot apical meristem (SAM) is not formed. Scanning electron microscopy showed that most of the cells in longcell embryos are tubular and abnormally enlarged. The level of expression of several genes involved in basic metabolism is not severely affected during early and mid embryogenesis, but storage molecule accumulation is reduced. Genes which in normal conditions are only expressed after germination, are expressed during kernel development in the longcell seeds. Mutant embryos undergo cell death in late embryogenesis. Nuclei in dying embryos are TUNEL positive, and different genes coding for hydrolytic enzymes are up-regulated. The expression of genes related to oxidative stress is also altered in longcell embryos. These results lead us to suggest that the longcell mutant may be cytokinesis-defective.  相似文献   

8.
Role of the unfolded protein response in cell death   总被引:10,自引:0,他引:10  
Unfolded protein response (UPR) is an important genomic response to endoplasmic reticulum (ER) stress. The ER chaperones, GRP78 and Gadd153, play critical roles in cell survival or cell death as part of the UPR, which is regulated by three signaling pathways: PERK/ATF4, IRE1/XBP1 and ATF6. During the UPR, accumulated unfolded protein is either correctly refolded, or unsuccessfully refolded and degraded by the ubiquitin-proteasome pathway. When the unfolded protein exceeds a threshold, damaged cells are committed to cell death, which is mediated by ATF4 and ATF6, as well as activation of the JNK/AP-1/Gadd153-signaling pathway. Gadd153 suppresses activation of Bcl-2 and NF-κB. UPR-mediated cell survival or cell death is regulated by the balance of GRP78 and Gadd153 expression, which is coregulated by NF-κB in accordance with the magnitude of ER stress. Less susceptibility to cell death upon activation of the UPR may contribute to tumor progression and drug resistance of solid tumors.  相似文献   

9.
S. Hasezawa  T. Nagata 《Protoplasma》1993,176(1-2):64-74
Summary A 49 kDa protein in tobacco BY-2 cells has been found to be cross-reactive with antibodies raised against a 51 kDa protein that was isolated from sea urchin centrosomes and identified as a microtubule-organizing center (MTOC) in animal cells. Tracing the fate of the 49 kDa protein during progression of the cell cycle in highly synchronized tobacco BY-2 cells revealed that this protein was colocalized with plant microtubules (MTs): the location of the 49 kDa protein coincided with preprophase bands (PPBs), mitotic spindles and phragmoplasts. Furthermore, between the M and G1 phases, the 49 kDa protein was observed in the perinuclear regions, in which the initials of MTs are organizing to form cortical MTs. At the G1 phase the location of the 49 kDa protein in the cell cortex coincided with that of the cortical MTs. It appeared that the 49 kDa protein in the cell cortex was transported as granules from the perinuclear regions. Thus, it is highly probable that the 49 kDa protein, which reacts with antibodies against the 51 kDa protein in sea urchin centrosomes, plays the role of an MTOC in plant cells. Thus, the mechanisms for organizing MTs in higher organisms appear to share a common protein, even though the organization of MTs is superficially very different in plant and animal cells.Abbreviations DAPI 4,6-diamidino-2-phenyl indole - MT microtubule - MTOC microtubule-organizing center - PAGE polyacrylamide gel electrophoresis - PBS phosphate-buffered saline - PPB preprophase band - SDS sodium dodecylsulfate  相似文献   

10.
The present investigation was undertaken to verify whether mitochondria play a significant role in aluminium (Al) toxicity, using the mitochondria isolated from tobacco cells (Nicotiana tabacum, non-chlorophyllic cell line SL) under Al stress. An inhibition of respiration was observed in terms of state-III, state-IV, succinate-dependent, alternative oxidase (AOX)-pathway capacity and cytochrome (CYT)-pathway capacity, respectively, in the mitochondria isolated from tobacco cells subjected to Al stress for 18 h. In accordance with the respiratory inhibition, the mitochondrial ATP content showed a significant decrease under Al treatment. An enhancement of reactive oxygen species (ROS) production under state-III respiration was observed in the mitochondria isolated from Al-treated cells, which would create an oxidative stress situation. The opening of mitochondrial permeability transition pore (MPTP) was seen more extensively in mitochondria isolated from Al-treated cells than in those isolated from control cells. This was Ca(2+) dependent and well modulated by dithioerythritol (DTE) and Pi, but insensitive to cyclosporine A (CsA). The collapse of inner mitochondrial membrane potential (DeltaPsi(m)) was also observed with a release of cytochrome c from mitochondria. A great decrease in the ATP content was also seen under Al stress. Transmission electron microscopy analysis of Al-treated cells also corroborated our biochemical data with distortion in membrane architecture in mitochondria. TUNEL-positive nuclei in Al-treated cells strongly indicated the occurrence of nuclear fragmentation. From the above study, it was concluded that Al toxicity affects severely the mitochondrial respiratory functions and alters the redox status studied in vitro and also the internal structure, which seems to cause finally cell death in tobacco cells.  相似文献   

11.
Immunoblot analysis with antibodies prepared against highly purified recombinant truncated kinesin-like proteins, KatB(5–249) and KatC(207–754), encoded by the katB and katC genes of Arabidopsis thaliana revealed the presence of a kinesin-like polypeptide, termed KatB/C, in cultured tobacco BY-2 cells. The KatB/C polypeptide cosedimented with microtubules in the presence of a nonhydrolyzable ATP analogue and was released from microtubules in the presence of ATP, both of which are characteristics of kinesin proteins. The amount of KatB/C polypeptide in synchronous BY-2 cells increased during M phase of the cell cycle. Microtubule-based structures present in cells at M phase, such as the spindle and phragmoplast, may be the site of action of the KatB/C protein.  相似文献   

12.
Type 1 diabetes may depend on cytokine-induced β-cell death and therefore the current investigation was performed in order to elucidate this response in Shb-deficient islets.A combination of interleukin-1β and interferon-γ caused a diminished β-cell death response in Shb null islets. Furthermore, the induction of an unfolded protein response (UPR) by adding cyclopiazonic acid did not increase cell death in Shb-deficient islets, despite simultaneous expression of UPR markers. The heat-shock protein Hsp70 was more efficiently induced in Shb knockout islets, providing an explanation for the decreased susceptibility of Shb-deficient islets to cytokines.It is concluded that islets deficient in the Shb protein are less susceptible to cytotoxic conditions, and that this partly depends on their increased ability to induce Hsp70 under such circumstances. Interference with Shb signaling may provide means to improve β-cell viability under conditions of β-cell stress.  相似文献   

13.
Cortical microtubules (MTs) in protoplasts prepared from tobacco (Nicotiana tabacum L.) BY-2 cells were found to be sensitive to cold. However, as the protoplasts regenerated cell walls they became resistant to cold, indicating that the cell wall stabilizes cortical MTs against the effects of cold. Since poly-l-lysine was found to stabilize MTs in protoplasts, we examined extensin, an important polycationic component of the cell wall, and found it also to be effective in stabilizing the MTs of protoplasts. Both extensin isolated from culture filtrates of tobacco BY-2 cells and extensin isolated in a similar way from cultures of tobacco XD-6S cells rendered the cortical MTs in protoplasts resistant to cold. Extensin at 0.1 mg·ml−1 was as effective as the cell wall in this respect. It is probable that extensin in the cell wall plays an important role in stabilizing cortical MTs in tobacco BY-2 cells.  相似文献   

14.
Galectin-3 internal gene (Galig) was recently identified as an internal gene transcribed from the second intron of the human galectin-3 gene that is implicated in cell growth, cell differentiation, and cancer development. In this study, we show that galig expression causes morphological alterations in human cells, such as cell shrinkage, cytoplasm vacuolization, nuclei condensation, and ultimately cell death. These alterations were associated with extramitochondrial release of cytochrome c, a known cell death effector. Furthermore, Bcl-xL co-transfection significantly reduced the release of cytochrome c induced by galig expression, suggesting a common pathway between the cytotoxic activity of galig and the anti-apoptotic activity of Bcl-xL. This antagonism was not observed upon co-transfection of Bcl-2 and galig. Galig encodes a mitochondrial-targeted protein named mitogaligin. Structure-activity relationship studies showed that the mitochondrial addressing of mitogaligin relies on an internal sequence that is required and sufficient for the release of cytochrome c and cell death upon cell transfection. Moreover, incubation of isolated mitochondria with peptides derived from mitogaligin induces cytochrome c release. Altogether, these results show that galig is a novel cell death gene encoding mitogaligin, a protein promoting cytochrome c release upon direct interaction with the mitochondria.  相似文献   

15.
Using suppression subtractive hybridisation (SSH), we identified a hitherto unreported gene PHACTR-1 (Phosphatase Actin Regulating Protein-1) in Human Umbilical Vascular Endothelial Cells (HUVECs). PHACTR-1 is an actin and protein phosphatase 1 (PP1) binding protein which is reported to be highly expressed in brain and which controls PP1 activity and F-actin remodelling. We have also reported that its expression is dependent of Vascular Endothelial Growth Factor (VEGF-A165). To study its function in endothelial cells, we used a siRNA strategy against PHACTR-1. PHACTR-1 siRNA-treated HUVECs showed a major impairment of tube formation and stabilisation. PHACTR-1 depletion triggered apoptosis through death receptors DR4, DR5 and FAS, which was reversed using death receptor siRNAs or with death receptor-dependent caspase-8 siRNA. Our findings suggest that PHACTR-1 is likely to be a key regulator of endothelial cell function properties. Because of its central role in the control of tube formation and endothelial cell survival, PHACTR-1 may represent a new target for the development of anti-angiogenic therapy.  相似文献   

16.
The unfolded protein response (UPR) contributes to chlamydial pathogenesis, as a source of lipids and ATP during replication, and for establishing the initial anti-apoptotic state of host cell that ensures successful inclusion development. The molecular mechanism(s) of UPR induction by Chlamydia is unknown. Chlamydia use type III secretion system (T3SS) effector proteins (e.g, the Translocated Actin-Recruiting Phosphoprotein (Tarp) to stimulate host cell's cytoskeletal reorganization that facilitates invasion and inclusion development. We investigated the hypothesis that T3SS effector-mediated assembly of myosin-II complex produces activated non-muscle myosin heavy chain II (NMMHC-II), which then binds the UPR master regulator (BiP) and/or transducers to induce UPR. Our results revealed the interaction of the chlamydial effector proteins (CT228 and Tarp) with components of the myosin II complex and UPR regulator and transducer during infection. These interactions caused the activation and binding of NMMHC-II to BiP and IRE1α leading to UPR induction. In addition, specific inhibitors of myosin light chain kinase, Tarp oligomerization and myosin ATPase significantly reduced UPR activation and Chlamydia replication. Thus, Chlamydia induce UPR through T3SS effector-mediated activation of NMMHC-II components of the myosin complex to facilitate infectivity. The finding provides greater insights into chlamydial pathogenesis with the potential to identify therapeutic targets and formulations.  相似文献   

17.
Summary The effects of ascorbate (ASC) and dehydroascorbate (DHA) on cell proliferation were examined in the tobacco Bright Yellow 2 (TBY-2) cell line to test the hypothesis that the ASC-DHA pair is a specific regulator of cell division. The hypothesis was tested by measuring the levels of ASC and DHA or another general redox pair, glutathione (GSH) and glutathione disulfide (GSSG), during the exponential-growth phase of TBY-2 cells. A peak in ASC, but not GSH, levels coincided with a peak in the mitotic index. Moreover, when the cells were enriched with ascorbate, a stimulation of cell division occurred whereas, when the cells were enriched with DHA, the mitotic index was reduced. In contrast, glutathione did not affect the mitotic-index peak during this exponential-growth phase. The data are consistent in showing that the ASC-DHA pair acts as a specific redox sensor which is part of the mechanism that regulates cell cycle progression in this cell line.  相似文献   

18.
Disintegration of the vacuolar membrane (VM) has been proposed to be a crucial event in various types of programmed cell death (PCD) in plants. However, its regulatory mechanisms are mostly unknown. To obtain new insights on the regulation of VM disintegration during hypersensitive cell death, we investigated the structural dynamics and permeability of the VM, as well as cytoskeletal reorganization during PCD in tobacco BY-2 cells induced by a proteinaceous elicitor, cryptogein. From sequential observations, we have identified the following remarkable events during PCD. Stage 1: bulb-like VM structures appear within the vacuolar lumen and the cortical microtubules are disrupted, while the cortical actin microfilaments are bundled. Simultaneously, transvacuolar strands including endoplasmic microtubules and actin microfilaments are gradually disrupted and the nucleus moves from the center to the periphery of the cell. Stage 2: cortical actin microfilament bundles and complex bulb-like VM structures disappear. The structure of the large central vacuole becomes simpler, and small spherical vacuoles appear. Stage 3: the VM is disintegrated and a fluorescent dye, BCECF, leaks out of the vacuoles just prior to PCD. Application of an actin polymerization inhibitor facilitates both the disappearance of bulb-like vacuolar membrane structures and induction of cell death. These results suggest that the elicitor-induced reorganization of actin microfilaments is involved in the regulation of hypersensitive cell death via modification of the vacuolar structure to induce VM disintegration.  相似文献   

19.
T. Kawazu  S. Kawano  T. Kuroiwa 《Protoplasma》1995,186(3-4):183-192
Summary We developed a new method for distinguishing the Golgi apparatus from the other membranous organelles which contain DNA, such as mitochondria and chloroplasts, under a fluorescence microscope. Thin sections of cells embedded in Technovit 8100 resin were stained with both 3,3-dihexyloxacarbocyanine iodide (DiOC6) and 4,6-diamidino-3-phenylindole (DAPI), and those three membranous organelles were observed under an epifluorescence microscope. The Golgi apparatus, which do not contain DNA, were easily recognized when the two images stained with DiOC6 and DAPI were superimposed using an image processor. Using this method, we investigated the dynamics of cellular membranes and organelles during the mitotic cycle of synchronized cultured tobacco cells BY-2 (Nicotiana tabacum L. cv. Bright Yellow 2). The Golgi apparatus did not accumulate in the rim of the formating early cell plate at anaphase, while it accumulated near the maturing cell plate at telophase, and this accumulation seemed to be related to the maturation of cell plates. To confirm this hypothesis, synchronized BY-2 cells were treated with caffeine, which is known to inhibit the cell plate formation. Most of the cells treated with caffeine remained in a phase in which Golgi vesicles were accumulated at the equatorial plate, but the cell plate was only partially maturing. The Golgi apparatus accumulated only near the partially maturing cell plate, but not by the equatorial plate where the Golgi vesicles had accumulated.Abbreviations DiOC6 3,3-dihexyloxacarbocyanine iodide - DAPI 4,6-diamidino-3-phenylindole - LSD a modified Linsmaier and Skoog's medium containing 2,4-D  相似文献   

20.
Oligochitosan has been proved to trigger plant cell death. To gain some insights into the mechanisms of oligochitosan-induced cell death, the nature of oligochitosan-induced cell death and the role of calcium (Ca2+), nitric oxide (NO) and hydrogen peroxide (H2O2) were studied in tobacco suspension cells. Oligochitosan-induced cell death occurred in cytoplasmic shrinkage, phosphatidylserine externalization, chromatin condensation, TUNEL-positive nuclei, cytochrome c release and induction of programmed cell death (PCD)-related gene hsr203J, suggesting the activation of PCD pathway. Pretreatment cells with cyclosporin A, resulted in reducing oligochitosan-induced cytochrome c release and cell death, indicating oligochitosan-induced PCD was mediated by cytochrome c. In the early stage, cells undergoing PCD showed an immediate burst in free cytosolic Ca2+ ([Ca2+]cyt) elevation, NO and H2O2 production. Further study showed that these three signals were involved in oligochitosan-induced PCD, while Ca2+ and NO played a negative role in this process by modulating cytochrome c release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号