首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 56 毫秒
1.
为探究中国超低排放燃煤电厂汞及其他有害痕量元素未来标准制定的可行性及建议,综合比对了中国与欧盟、美国等发达国家燃煤电厂大气痕量元素排放标准限值,并基于燃煤电厂现场测试相关文献调研分析,系统地评估了中国燃煤电厂汞及其他9种典型痕量元素(砷、铅、硒、镉、铬、锑、钴、镍和锰)的排放现状.结果表明:与美国、欧盟、加拿大等发达国...  相似文献   

2.
上海燃煤电厂大气汞排放初探   总被引:2,自引:0,他引:2  
燃煤电厂是主要的人为汞排放源之一,也是上海城市范围内最大的大气汞排放点源。耗煤量、煤汞含量、燃烧装置的结构以及空气污染控制装置的协同除汞能力是影响燃煤电厂大气汞排放的主要因素。文章利用历年的统计数据和美国环境保护局的经验值筛选出汞排放的影响因子,粗略估算了上海燃煤电厂的大气汞年排放量,从空气污染控制装置的协同除汞效果.改进颗粒物控制装置、提高烟气脱硫系统的汞捕集能力、投加粉末状活性碳的除汞效果等方面,分析了空气污染控制装置的除汞效果及其改进方法。  相似文献   

3.
科学制定污染物排放标准是治理环境污染问题的重要措施之一,欧美等发达国家分别制定了适合本国国情的污染物排放标准,并进行了多次修订。为借鉴欧美等发达国家在电力行业污染物控制的成功经验和科学制定我国火电大气污染物排放标准,对比分析了中美欧等国家燃煤电厂大气污染物SO2,NOx和颗粒物排放控制历程,当前中美欧现行燃煤电厂排放标准和控制技术水平及我国火电污染物控制现状,提出了科学制定我国燃煤电厂大气污染物排放标准的建议。  相似文献   

4.
燃煤电厂超低排放改造前后汞污染排放特征   总被引:1,自引:0,他引:1       下载免费PDF全文
针对300 MW燃煤机组,基于US EPA(美国国家环境保护局)的30 B汞监测方法,通过多点监测对比了实施低氮燃烧器改造、SCR脱硝改造、新增低温省煤器、静电除尘器高频电源改造、湿法脱硫塔脱硫提效并增加管式除雾、新增湿式静电除尘器技术路线开展的超低排放改造前后汞排放及分布特征.研究表明:超低排放改造前,神华煤w(Hg)为49 μg/kg,烟囱入口ρ(Hg)测量值为1.87 μg/m3;煤燃烧及经过污染物控制单元后,有35.0%的汞存在于灰中,有29.5%的汞存在于石膏中,有35.4%的汞从烟囱排出.超低排放改造后,神华煤中w(Hg)为30 μg/kg,烟囱入口ρ(Hg)测量值为0.46 μg/m3;脱硫进水及湿式除尘器进水对汞平衡几乎没有影响,煤燃烧及经过污染物控制单元后,有36.1%的汞存在于灰中,有55.2%的汞存在于石膏中,有8.7%的汞从烟囱排出.超低排放改造后,污染物控制设备的烟气综合脱汞效率提高了1.5倍左右,表明超低排放脱硝增强了对汞的催化氧化,而脱硫增强了对二价汞的吸收结果.湿式电除尘器对脱汞没有明显效果.   相似文献   

5.
通过对某地区4个有代表性的燃煤电厂汞排放的数据分析,研究了国内燃煤电厂汞排放的一些特征,并同发达国家燃煤电厂汞排放和汞脱除的情况作了比较,分析了我国燃煤电厂在汞排放和汞脱除领域所存在的差距.在介绍了国内外燃煤电厂的主要汞脱除技术后,提出我国今后应加大对燃煤电厂汞脱除技术投入和研究的建议.  相似文献   

6.
对高锰酸钾溶液吸收法、活性炭吸附管离线采样法、在线连续监测法及安大略法等4种现有燃煤电厂大气汞排放监测方法进行了比较研究。比较结果表明:高锰酸钾溶液吸收法监测结果与实际排放结果相差较大,且监测结果标准偏差高达116.7%,因此不适用于燃煤电厂出口废气监测。其他三种监测方法中,安大略法监测精度最好,但活性炭吸附管离线采样法更适于燃煤电厂大气汞排放日常监测。  相似文献   

7.
引言 燃煤锅炉排放的重金属有害空气污染物(HAP)主要有汞、镉、铅、铬和砷等,而(汞)Hg是其中最易挥发的重金属元素之一.  相似文献   

8.
介绍了汞污染对环境、人体健康的影响与危害及燃煤电厂汞的产生和排放机理,对国内外燃煤电厂汞排放控制相关政策、排放标准进行了对比,重点介绍目前主要的烟气汞排放监测方法.其中较为成熟的烟气汞排放监测技术主要是美国国家环境保护局(US EPA)制定的安大略法(OHM法),30A法(在线监测)和30B法(吸附采样分析法).结合我...  相似文献   

9.
从1990年《清洁空气法案(修正案)》的通过,到2011年《汞及其他有毒有害气体排放限制标准》的发布,针对燃煤电厂大气汞排放控制,美国采取了一系列行动,并最终结束了20年的减排措施的不确定性。在我国《"十三五"生态环境保护规划》将加强燃煤电厂大气汞排放控制列为了重点任务,美国在燃煤电厂大气汞排放控制法规发展历程中积累的注重科学研究、多污染物综合治理效应、公众参与等有益经验,值得我国参考与借鉴。  相似文献   

10.
燃煤电厂烟气汞排放控制技术   总被引:3,自引:0,他引:3  
引言 燃煤锅炉排放的重金属有害空气污染物(HAP)主要有汞、镉、铅、铬和砷等,而(汞)Hg是其中最易挥发的重金属元素之一。局部区域排放的汞通过在陆地、海洋的沉积和二次排放可传输扩散到范围更广的区域,有研究认为如果亚洲每年减少50%汞排放,美国西海岸则会减少由于湿沉降带来的10%~20%的汞。由于汞的剧毒性、积累性,加之在大气中停留时间较长,因此对环境的危害不容忽视。有关汞的排放及控制已经成为煤的燃烧污染防治中的一个新兴的研究领域。  相似文献   

11.
燃煤火电厂汞排放因子测试设计及案例分析   总被引:5,自引:6,他引:5  
在火电厂锅炉煤的燃烧中,汞的迁移是个复杂的过程.在炉内高温下,几乎所有的汞以气态形式停留于烟气中,随着烟气温度的降低,汞被再分配到粉煤灰、炉渣和空气中.采用测试和衡算的方法,对火电厂汞排放因子进行测试和分析.结果表明:汞的迁移分配与煤中汞的赋存量、粉煤灰中可燃物碳的含量及烟气温度相关.煤燃烧后,进入粉煤灰中的汞占煤中汞含量的12.7%~31.3%,进入炉渣中的汞占0.9%~12.8%,大部分汞排入大气中,占67.8%~82.2%.   相似文献   

12.
基于实测的燃煤电厂汞排放特性分析与研究   总被引:6,自引:4,他引:6  
选取我国6个有代表性的燃煤电厂进行现场实测,依据现场监测的汞排放浓度数据计算得出每个燃煤电厂汞的脱除率和汞平均排放因子,从而得出这6个燃煤电厂汞排放特性,为将来我国汞排放控制提供支持和依据.6个燃煤电厂的汞排放浓度为4.72~14.54μg/m3,汞脱除效率为20.89%~70.63%,汞排放因子为14.09~56.0...  相似文献   

13.
燃煤机组超低排放改造对汞的脱除效果研究   总被引:1,自引:0,他引:1  
燃煤烟气中汞污染的控制是目前重要的环保课题之一,燃煤电厂利用现有的脱硝、脱硫、除尘设备去除汞,文章分析燃煤电厂烟气净化设备超低排放改造后汞的排放水平,说明现有废气处理设施超低排放改造,既能有效降低烟尘、二氧化硫、氮氧化物排放浓度,也有利于汞的去除,燃煤机组超低排放改造后汞的排放浓度远低于现行0.03 mg/m3的限值;通过分析燃煤电厂现有烟气净化设备对汞的协同去除效果和脱除汞的原理,提出了未来燃煤烟气汞污染控制措施的建议.  相似文献   

14.
参照测量不确定度评定与表示的国家技术规范,基于近年来我国燃煤电厂常规污控设备协同脱汞的现场测试数据(文献报道和实测值)及各省原煤w(汞)的实测值,初步构建了国内燃煤电厂烟气汞排放不确定度的计算方法,并以2010年的燃煤量、污控方式布局为基础,计算了该年度汞排放的不确定度. 结果表明:2010年我国燃煤电厂烟气汞排放的总不确定度为48.8t,占平均排放总量的34.3%;其中60.2%源于污控设备脱汞效率的不确定度,39.8%源于原煤w(汞)的不确定度;采用ESP(静电除尘)、ESP+WFGD(静电除尘+湿法脱硫)、SCR+ESP+WFGD(选择性催化还原脱硝+静电除尘+湿法脱硫)和FF(袋式除尘)大气污控组合的机组各存在6.0、32.2、9.7和0.9t的烟气汞排放不确定度,分别占各对应机组烟气汞排放量的19.3%、32.8%、84.6%和53.6%,其中SCR+ESP+WFGD污控组合烟气汞排放的相对不确定度最大. 随着我国烟气脱硝工作全面推行,2015年以后,SCR+ESP+WFGD污控措施(组合)的机组所占比例将会提高到66%以上,如果仍以现有数据为基础,则来自SCR+ESP+WFGD污控措施(组合)机组的烟气汞排放不确定度将会大幅增加,因此急需增加对该类装置脱汞效率的实测样本数量.   相似文献   

15.
重庆市燃煤电厂汞排放特征及排放量   总被引:1,自引:2,他引:1  
以重庆市两种锅炉类型[循环流化床锅炉(CFB)和煤粉炉(PC)]的4个燃煤电厂为研究对象,分析不同规模电厂输入输出物料汞含量,探讨电厂中汞的来源和去向,研究重庆市典型燃煤电厂汞的排放特征,估算其大气汞排放量和排放因子.结果表明,4个电厂的汞主要来源为煤,入炉煤汞含量为(80.77±6.39)~(266.83±4.71)μg·kg-1.4个电厂排放的汞主要进入了固体废物,其中,CFB电厂中汞的去向主要是粉煤灰,而PC电厂汞的去向主要是脱硫石膏和粉煤灰.4个电厂的汞脱除率为72.89%~96.05%,CFB电厂高于PC电厂.4个电厂的大气汞排放因子(EF电、EF煤)分别为4.66~29.47μg·(k W·h)-1和8.55~71.77 mg·t-1,大气汞排放量为6.13~429.17 g·d-1.燃煤电厂的汞排放与煤中汞含量、锅炉类型、发电负荷、污控设备等因素有关.为控制电厂汞排放,需改善燃煤机组的能效,提高烟气净化设备的除汞效率,加强燃煤电厂的固体废物利用监管.  相似文献   

16.
李辉  孙雪丽  庞博  朱法华  王圣  晏培 《环境科学》2021,42(12):5563-5573
从我国"十四五"及2035年远景目标经济发展预测出发,结合碳减排战略目标下的既有与强化政策情景,基于弹性系数法预测电力需求,测算在不同污染物排放标准约束情景下火电大气污染物排放情况及减排潜力,结果表明,在不同的政策和排放标准约束情景下,我国火电行业烟尘、SO2和NOx排放水平变化呈现出不同的趋势,到2035年,在2016年水平上的减排潜力分别在45.97%~85.37%、52.61%~84.90%和33.80%~71.08%之间,来自碳减排目标下政策因素带来的减排潜力,较不同污染物排放标准约束条件带来的减排潜力更为明显,在强化政策情景下,采取保持模式标准约束的污染物减排潜力已与超低模式基本相当,甚至超过或接近既有政策下采取收严模式标准约束的效果,通过强化实施能源和电力优化政策,加快实现火电发电量达峰,合理引导高污染排放水平火电机组优先退出生产,同样可使火电大气污染物排放得到有效控制,还可避免环保改造投资的浪费和损失.  相似文献   

17.
基于2012年江苏省10家典型燃煤电厂相关数据,分析了影响烟气中汞(Hg)排放浓度的因素。其中电厂负荷、烟气净化设施、燃烧炉类型等会直接影响烟气中Hg的排放浓度,而原煤中Hg的含量与烟气中Hg的浓度没有直接的关系。通过模型对江苏省现有300 MW以上燃煤电厂Hg排放量进行了估算,2012年Hg排放总量约为7.307 t。通过反距权重插值进行分析,发现在区域分布上江苏省整体呈现出南部高于北部的趋势。  相似文献   

18.
为研究燃煤电厂在燃煤发电机组结构优化调整和不同末端控制措施条件下PM2.5的排放情况,以2012年为基准年,设计了分阶段、分地区不断优化的控制情景(基准、适中、加严和最严情景),并依据《大气细颗粒物一次源排放清单编制技术指南(试行)》建立的减排潜力模型对2017年、2020年和2030年我国燃煤电厂PM2.5减排潜力及空间分布进行预测分析. 结果表明:通过燃煤发电机组结构优化调整,2017年、2020年和2030年我国燃煤电厂PM2.5排放量与调整前相比可分别减少3.62×104、8.52×104和24.43×104 t,但相对于基准年而言,PM2.5排放量并未减少;进一步结合末端控制措施优化进行控制,PM2.5最大减排潜力(相对于基准年而言)可分别达到59.42×104±7.83×104、82.83×104±5.82×104和81.89×104±6.76×104 t,最高减排比例分别达到66.5%±8.8%、92.8%±6.5%和91.6%±7.6%. 我国各省(市/区)燃煤电厂PM2.5减排潜力与其煤耗量和采取的控制措施有关,燃煤量越大,控制措施越严格,则减排潜力越大. 京津冀、长三角和珠三角地区燃煤电厂在实现超低排放,即最严情景下2017年PM2.5减排潜力分别为5.93×104、12.04×104和4.70×104 t;2017年、2020年和2030年这3个区域PM2.5总减排潜力分别为22.68×104、22.36×104和22.07×104 t. 内蒙古、江苏、山东、广东、河北和山西等地在实施超低排放后,其PM2.5减排潜力均超过4×104 t,并且在全国范围内实施超低排放可显著降低我国燃煤电厂PM2.5排放量.   相似文献   

19.
在燃煤电厂实现大气污染物“近零排放”过程中,烟尘控制技术是关键,通过对除尘、脱硫、脱硝等先进环保技术的系统比较,提出了燃煤电厂大气污染物“近零排放”技术路线. 在地处长三角的国华舟山电厂4号机组采用高效低氮燃烧+SCR(选择性催化还原法)脱硝+旋转电极除尘+海水脱硫+湿式静电除尘的技术路线,ρ(烟尘)、ρ(SO2)、ρ(NOx)的实际排放值分别为2.46、2.76、19.80 mg/m3;在地处京津冀的国华三河电厂1号机组,采用高效低氮燃烧+SCR脱硝+低温省煤器+静电除尘(高效电源)+湿法脱硫+湿式静电除尘的技术路线,ρ(烟尘)、ρ(SO2)、ρ(NOx)的实际排放值分别为5、9、35 mg/m3. 实践表明,立足国情走煤炭清洁高效利用之路,燃煤电厂可以在低成本下实现大气污染物的“近零排放”. 通过对技术路线优化、低浓度污染物在线测量技术及“近零排放”中存在的一些问题进行分析和探讨,提出了燃煤电厂大气污染物控制技术的研究和发展方向. 估算结果表明,如果全国燃煤机组自2015年起采用“近零排放”技术,5 a内烟尘、SO2、NOx年均减排率分别可达19.0%、18.9%、18.5%.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号