首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, g-C3N4/KNbO3 heterojunction composites were prepared and used to water splitting for hydrogen production under simulated sunlight. The morphology and structure of the composites were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-Ray spectroscopy and high resolution transmission electron microscopy. The g-C3N4/KNbO3 composites exhibited the better photocatalytic performance for water splitting more than 2 and 1.8 times of the pure g-C3N4 and KNbO3. Meanwhile, the Pt nanoparticles as a co-catalyst were deposited on the surface of g-C3N4/KNbO3 as Pt-g-C3N4/KNbO3 composites for water splitting which enhanced photocatalytic properties almost 74 and 14 times than that of Pt-KNbO3 and Pt-g-C3N4. Such a significant improvement of the photocatalytic activity was mainly ascribed to the photoinduced electron-holes in the interface of g-C3N4/KNbO3 composites rapid separation and the co-catalysis effect of Pt nanoparticles. These present study work may provide a useful method for water splitting using an effective composites photocatalysts.  相似文献   

2.
Novel photocatalysts, which consist of two visible light responsive semiconductors including graphite-like carbon nitride (g-C3N4) and Fe2O3, were successfully synthesized via electrodeposition followed by chemical vapor deposition. The morphology of the g-C3N4/Fe2O3 can be tuned from regular nanosheets to porous cross-linked nanostructures. Remarkably, the optimum activity of the g-C3N4/Fe2O3 is almost 70 times higher than that of individual Fe2O3 for photoelectrochemical water splitting. The enhancement of photoelectrochemical activity could be assigned to the morphology change of the photocatalysts and the effective separation and transfer of photogenerated electrons and holes originated from the intimately contacted interfaces. The g-C3N4/Fe2O3 composites could be developed as high performance photocatalysts for water splitting and other optoelectric devices.  相似文献   

3.
Developing high activity and eco-friendly photocatalysts for water splitting is still a challenge in solar energy conversion. In this paper, B doped g-C3N4 quantum dots (BCNQDs) were prepared via a facile molten salt method using melamine and boron oxide as precursors. By introducing BCNQDs onto the surface of g-C3N4, g-C3N4/BCNQDs heterojunction was constructed via hydrothermal treatment. The resulting g-C3N4/BCNQDs heterojunction exhibits enhanced hydrogen evolution performance for water splitting under visible light irradiation. The mechanism underlying the improved photocatalytic activity was explored and discussed based on the formation of heterojunction between g-C3N4 and BCNQDs with well-matched band structure.  相似文献   

4.
g-C3N4 has shown great potentials in photocatalytic water splitting to produce hydrogen. Herein, we successfully synthesized g-C3N4 nanosheets via exfoliating bulk g-C3N4. And different metal nanoparticles were photo-deposited onto the surface of g-C3N4 nanosheets. The photocatalytic H2 production activity of g-C3N4 nanosheets increased from 0 to 11.2 μmol/h/gcat. The Pt loaded g-C3N4 nanosheets manifested the highest H2 production activity with a rate of 589.4 μmol/h/gcat. In addition, the hydrogen evolution rate was further enhanced with addition of external bias to fabricate a photoelectrocatalytic (PEC) system. And the maximum hydrogen production rate (23.1 mmol/h/m2) was obtained at a voltage of 0.6 V (vs. Ag/AgCl). The enhancement in H2 production may be due to the following reasons: (1) Two-dimensional atomic flakes is beneficial to increase the specific surface area of g-C3N4, enhance the mobility of carriers, and improve the energy band structure, (2) Pt nanoparticles play an important role in g-C3N4 electron transport, (3) the g-C3N4 nanosheets loaded with Pt nanoparticles exhibited significant enhancement in photoelectrocatalytic performance, which may be attributed to its enhanced electronic conductivity and photoelectrochemical surface area, (4) Pt inhibited the recombination of photogenerated carriers and significantly improved the photocatalytic performance. The enhancement mechanism was deeply discussed and explained in this work.  相似文献   

5.
A highly active photocatalyst based on g-C3N4 coated SrTiO3 has been synthesized simply by decomposing urea in the presence of SrTiO3 at 400 °C. The catalyst demonstrates a high H2 production rate ∼440 μmol h−1/g catalyst in aqueous solution under visible light irradiation, which is much higher than conventional anion doped SrTiO3 or physical mixtures of g-C3N4 and SrTiO3. The improved photocatalytic activity can be ascribed to the close interfacial connections between g-C3N4 and SrTiO3 where photo-generated electron and holes are effectively separated. The newly synthesized catalyst also exhibited a stable performance in the repeated experiments.  相似文献   

6.
Controlled deposition of g-C3N4 films, used as photoelectrodes in PEC water splitting is still considered a challenge. In this paper, nanosheets of g-C3N4 were deposited on FTO and FTO/TiO2 substrates via spray coating method. This method allows the preparation of g-C3N4 films with a better exposure of nanosheet edges to the solution and light, favoring the photocatalytic process. The morphology, chemical composition and optical properties of these films were investigated, their behavior as photoanodes in photoelectrochemical water splitting being also evaluated. The results evidenced the formation of g-C3N4 films with an enhanced visible light absorption and improved photocatalytic activity. The interaction of these films with TiO2 substrate consists in the insertion of nitrogen species in the TiO2 lattice. A significant increase in bulk donor densities value correlated with a longer lifetime of photogenerated electrons was observed for TiO2/g-C3N4 photoanode.  相似文献   

7.
The photocatalytic water splitting for generation of clean hydrogen energy has received increasingly attention in the field of photocatalysis. In this study, the Ta2O5/g-C3N4 heterojunctions were successfully fabricated via a simple one-step heating strategy. The photocatalytic activity of as-prepared photocatalysts were evaluated by water splitting for hydrogen evolution under visible-light irradiation (λ > 420 nm). Compared to the pristine g-C3N4, the obtained heterojunctions exhibited remarkably improved hydrogen production performance. It was found that the 7.5%TO/CN heterojunction presented the best photocatalytic hydrogen evolution efficiency, which was about 4.2 times higher than that of pure g-C3N4. Moreover, the 7.5%TO/CN sample also displayed excellent photochemical stability even after 20 h photocatalytic test. By further experimental study, the enhanced photocatalytic activity is mainly attributed to the significantly improve the interfacial charge separation in the heterojunction between g-C3N4 and Ta2O5. This work provides a facile approach to design g-C3N4-based photocatalyst and develops an efficient visible-light-driven heterojunction for application in solar energy conversion.  相似文献   

8.
Construction of heterostructured photocatalysts is a feasible method for improving hydrogen production from water splitting because of its good charge transport efficiency. Herein, we coupled the Ti-MOFs (TiATA) with metal-free graphitic carbon nitride (g-C3N4) to synthesize composites, g-C3N4@TiATA, in which a heterostructure was formed between g-C3N4 and TiATA. The establishment of heterojunctions not only broadens the light absorption range of g-C3N4@TiATA (490 nm) by contrast with g-C3N4 (456 nm), but also greatly accelerates charge migration. Photocatalytic studies present that the construction of heterostructure steering the charges flow from g-C3N4 to TiATA and then delivery to the cocatalyst of Pt nanoparticles, exhibiting an impressively photocatalytic hydrogen production rate (265.8 μmol·h−1) in assistance of 300 W Xenon lamp, which is about 3.4 times as much as g-C3N4/Pt.  相似文献   

9.
Photocatalytic for water splitting to produce hydrogen is recognized as a low-cost, promising and attractive method to solve environmental problems and energy crises, but finding a high-performance photocatalyst is a big challenge. In this work, we designed a type-II β-AsP/g-C3N4 van der Waals heterostructure as an efficient photocatalyst and had the first principles calculations to analyze its stability, electronic properties, and photocatalytic performance. The results showed that the photocatalyst of β-AsP/g-C3N4 heterostructure met the proper band gap and band edge of the redox potential of water splitting, had effective charge separation of photogenerated electronic holes, and efficient visible light response. Importantly, our research showed that the β-AsP/g-C3N4 heterostructure could proceed spontaneously in thermodynamics and had an excellent photocatalytic performance in further study. It had quite good hydrogen evolution performance with the Gibbs free energy of ?0.02 eV, which is closer to zero than ?0.09 eV of Pt (111). The overpotential of its oxygen evolution reaction is as low as 0.57 V. This work showed excellent development prospects for β-AsP/g-C3N4 heterostructure in the field of photocatalysts, which will promote the development of g–C3N4–based photocatalytic for water splitting.  相似文献   

10.
Developing effective catalysts for hydrogen evolution from hydrolysis of ammonia borane (AB) is of great significance considering the useful applications of hydrogen. Herein, graphitic carbon nitride (g-C3N4) prepared through the simply pyrolysis of urea was employed as a support for Rh nanoparticles (NPs) stabilization. The in-situ generated Rh NPs supported on g-C3N4 with an average size of 3.1 nm were investigated as catalysts for hydrogen generation from the hydrolysis of AB under mild conditions. The Rh/g-C3N4 catalyst exhibits a high turnover frequency of 969 mol H2· (min·molRh)?1 and a low activation energy of 24.2 kJ/mol. The results of the kinetic studies show that the catalytic hydrolysis of AB over the Rh/g-C3N4 catalyst is a zero-order reaction with the AB concentration and a first-order reaction with the Rh concentration. This work demonstrates that g-C3N4 is a useful support to design and synthesis of effective Rh-based catalyst for hydrogen-based applications.  相似文献   

11.
Herein, highly efficient and cost effective solar photocatalytic water splitting for hydrogen (H2) generation was achieved by modified g-C3N4. Visible light absorption of g-C3N4 was enhanced by decorating g-C3N4 matrix with silver nanoparticles (Ag). Moreover, incorporation of carbon nanotubes (CNTs) in Ag/g-C3N4 facilitated photocatalytic performance through efficient separation and transfer of photogenerated e-h pairs (charges) in Ag/g-C3N4 that consequently generated very pure and significant H2. Among several tested ratios (wt. %) of Ag/g-C3N4/CNTs, 1.82 (Ag/g-C3N4) and 2.00 (and Ag/g-C3N4/CNTs) were found to be highly efficient that harvested maximum visible-light and produced H2 @1.48 mmol h−1 and 1.78 mmol h−1. We witnessed distinctive role of CNTs as an electron collector and carrier to separate photogenerated e-h pairs to facilitate photocatalysis for H2 generation together with possible utility of Ag and CNTs doped materials with regard to energy transformation.  相似文献   

12.
SrSnO3 nanoparticles with peanut-like morphologies were synthesized by a simple wet chemical reaction. These peanut-shaped SrSnO3 were formed by the fusion of two or more nanoparticles with an average size of 45 nm. The resulting powders were characterized in detail using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Moreover, the photocatalytic activity for hydrogen evolution from pure water was investigated under UV light irradiation. The peanut-shaped nanoparticles exhibited a much higher photocatalytic activity compared to SrSnO3 powder synthesized by a solid-state reaction. This was attributed to their higher structural order, caused by the formation of a carbonate-free pure phase, as well as their higher surface area resulting from the decrease in the particle size.  相似文献   

13.
Photocatalytic hydrogen evolution from water is a feasible technique to solve energy crises and reduce dependance on carbon fuels. As for this, silver nanoparticles were grown on the surface of SnO2 coupled g-C3N4 nanocomposite for the generation of hydrogen gas from water under visible light photocatalysis. The prepared samples were properly characterized to investigate their light absorption characteristics followed by charge generation and separation for water splitting. The optimized nanocomposite produced 270 μmol h−1 g−1 hydrogen which was much superior to pure g-C3N4 and SnO2. These upgraded photocatalytic activities were attached to the extended visible-light absorption due to the presence of Ag nanoparticles characterized by surface plasmon resonance (SPR) and suitable conduction bands position of g-C3N4 and SnO2 for the separation of excited charges. The photoluminescence study, amount of produced hydroxyl free radicals and electrochemical investigation confirmed the long-rooted charge separation capability of the nanocomposites. We believe that this work will have more positive impacts on the synthesis of low cost SPR assisted photocatalysts for energy production and environmental purification.  相似文献   

14.
In this paper, a novel Au/g-C3N4/ZnIn2S4 plasma photocatalyst heterojunction composite with 3D hierarchical microarchitecture has been successfully constructed by integrating Au/g-C3N4 plasmonic photocatalyst composite with 3D ZnIn2S4 nanosheet through a simple hydrothermal process. The Au nanoparticles were firstly anchored on the surface of pristine g-C3N4 material to get Au/g-C3N4 plasmonic photocatalyst. Ascribing to the surface plasmon resonance of Au nanoparticles, the obtained Au/g-C3N4 plasmonic photocatalyst shows a significant improved photocatalytic activity toward hydrogen production from water with visible light response comparing with pristine g-C3N4. Further combining Au/g-C3N4 plasmonic photocatalyst with 3D ZnIn2S4 nanosheet to construct a heterojunction composite. Owing to the synergistic effect of the surface plasmon resonance of Au nanoparticles in Au/g-C3N4 and the heterojunction structure in the interface of Au/g-C3N4 and ZnIn2S4, the prepared Au/g-C3N4/ZnIn2S4 plasma photocatalyst heterojunction composite shows an excellent photocatalytic activity toward hydrogen production from water with visible light response, which is around 7.0 and 6.3 times higher than that of the pristine C3N4 and Znln2S4 nanosheet, respectively. The present work might provide some insights for exploring other efficient heterojunction photocatalysts with excellent properties.  相似文献   

15.
For the first time, g-C3N4@α-Fe2O3/Co-Pi heterojunctional hollow spheres were successfully fabricated via thermal condensation method followed by solvothermal and photo-deposition treatment, which showed excellent photocatalytical property. Except for the Z-scheme charge transfer between α-Fe2O3 and g-C3N4, the Co-Pi could further reduce the combination of photogenerated electrons and holes as a hole storage agent, resulting in remarkably enhanced visible-light photocatalytic water splitting activity with the H2 production rate of 450 μmol h−1g−1, which is 15.7 times higher than that of g-C3N4. Moreover, the photocatalytic activity of the prepared ternary hollow photocatalysts showed almost no significant weakness after five cycles, which indicated their good performance stability. The as-prepared g-C3N4@α-Fe2O3/Co-Pi also possessed good activity for overall water splitting with the hydrogen production rate reaching 9.8 μmol h−1g−1. This synthesized g-C3N4@α-Fe2O3/Co-Pi composite is expected to be a promising candidate for water splitting.  相似文献   

16.
Transition metal phosphides are considered as the most prospective replacements for noble metal cocatalysts used for H2 evolution during photocatalytic water splitting. In this work, Ni2P/g-C3N4 composite photocatalyst was synthesized using a simple in-situ hydrothermal method by one step. Benefiting from the excellent light trapping, efficient transfer of charge carriers and strong stability of Ni2P nanoparticles, as well as the stable interface contact between Ni2P and g-C3N4, the Ni2P/g-C3N4 exhibit greatly enhanced H2 evolution performance during photocatalytic water splitting. The optimized H2 evolution rate can reach 3344 μmol h?1 g?1 over 17.5 wt% Ni2P/g-C3N4, which is 68.2 times greater than that of pure g-C3N4 and even much greater than that of 15 wt% Pt/g-C3N4. The apparent quantum efficiency (QE) is about 9.1% under 420 nm monochromatic. The enhancement mechanism was demonstrated in detail by transient photocurrent responses, photoluminescence spectra and electrochemical impedance spectroscopy. This work develops a facile strategy to fabricate transition metal phosphide/semiconductor heterojunction systems with potential application for photocatalytic H2 evolution.  相似文献   

17.
A novel hierarchical TiO2 spheroids embellished with g-C3N4 nanosheets has been successfully developed via thermal condensation process for efficient solar-driven hydrogen evolution and water depollution photocatalyst. The photocatalytic behaviour of the as-prepared nanocomposite is experimented in water splitting and organic pollutant degradation under solar light irradiation. The optimal ratio of TiO2 spheroids with g-C3N4 in the nanocomposite was found to be 1:10 and the resulting composite exhibits excellent photocatalytic hydrogen production of about 286 μmol h?1g?1, which is a factor of 3.4 and 2.3 times higher than that of pure TiO2 and g-C3N4, respectively. The outstanding photocatalytic performance in this composite could be ascribed as an efficient electron-hole pair's separation and interfacial contact between TiO2 spheroids with g-C3N4 nanosheets in the formed TiO2/g-C3N4 nanocomposite. This work provide new insight for constructing an efficient Z-scheme TiO2/g-C3N4 nanocomposites for solar light photocatlyst towards solar energy conversion, solar fuels and other environmental applications.  相似文献   

18.
Engineering surface-active facets of metal cocatalysts is one of the most widely explored strategies to develop advanced photocatalysts and promote photocatalytic solar energy conversion. Here, the surface-active facets of Pd nanocrystals in Pd/g-C3N4 photocatalyst was related to the injection flow rate of PdCl2. When PdCl2 was injected at a low flow rate of 7.5 mL/h (7.5-Pd/g-C3N4), the Pd nanocrystals were uniformly dispersed onto the g-C3N4 with exposed low-index {100} and {111} surface-active facets. However, increasing the injection flow rate to 150 mL/h (150-Pd/g-C3N4) formed Pd nanocrystals where only the {100} surface-active facet was exposed. Under visible light irradiation, the 7.5-Pd/g-C3N4 nanocomposite exhibited excellent water splitting activity for hydrogen production (7.61 mmol g−1 h−1), which was significantly better than with the 150-Pd/g-C3N4 nanocomposite (3.3 mmol g−1 h−1). Theoretical calculations and experimental results confirm the importance of the {111} surface-active facets in the 7.5-Pd/g-C3N4 nanocomposite for promoting photocatalytic activity.  相似文献   

19.
Rational design of high-efficiency heterostructure photocatalyst is an effective strategy to realize photocatalytic H2 evolution from pure water, but remains still a considerable challenge. Herein, an anatase/rutile TiO2/g-C3N4 (A/R/CN) multi-heterostructure photocatalyst was prepared by a facile thermoset hybrid method. The combination of two type-II semiconductor heterostructures (i.e., A/R and R/CN) significantly improve the separation and transfer efficiency of photogenerated carriers of anatase TiO2, rutile TiO2 and g-C3N4, and A/R/CN photocatalyst with high activity is obtained. The optimal A/R/CN photocatalyst exhibits significantly increased photocatalytic overall water splitting activity with a rate of H2 evolution of 374.2 μmol g−1h−1, which is about 8 and 4 times that of pure g-C3N4 and P25. Moreover, it is demonstrated to be stable and retained a high activity (ca. 91.2%) after the fourth recycling experiment. This work comes up with an innovative perspective on the construction of multi-heterostructure interfaces to improve the overall photocatalytic water splitting performance.  相似文献   

20.
Large-surface-area mesoporous Nb2O5 microspheres were successfully grown in-situ on the surface of g-C3N4 nanosheets via a facile solvothermal process with the aid of Pluronic P123 as a structure-directing agent. The resultant g-C3N4/Nb2O5 nanocomposites exhibited enhanced photocatalytic activity for H2 evolution from water splitting under visible light irradiation as compared to pure g-C3N4. The optimal composite with 38.1 wt% Nb2O5 showed a hydrogen evolution rate of 1710.04 μmol h?1 g?1, which is 4.7 times higher than that of pure g-C3N4. The enhanced photocatalytic activity could be attributed to the sufficient contact interface in the heterostructure and large specific surface area, which leads to effective charge separation between g-C3N4 and Nb2O5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号