首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modelling and degradation study on a copper indium diselenide module   总被引:1,自引:0,他引:1  
This paper illustrates the testing of a commercially available copper indium diselenide (CIS) module under real operating conditions, and the development of a semi-empirical model. The tests were carried out under different cell temperature, solar radiation and air mass conditions. A semi-empirical efficiency model was adopted to correlate 1168 measured data sets before degradation. The data was then transformed to validate the appropriateness of the model. Identical tests were repeated after one year's exposure to sunlight. The effect on the efficiency model was then investigated. In particular the change in STC efficiency and temperature coefficient will be discussed as an example of application of the efficiency model. Following detailed analysis of the results, it is suggested that the PV industry broadens disclosure of module parameters in future technical data published.  相似文献   

2.
Development of flexible and lightweight solar cells is interesting for terrestrial and space applications that require a very high specific power (kW/kg) and flexibility for curved shaping or rolling. Flexible CdTe/CdS solar cells of 11% efficiency in superstrate and 7.3% efficiency in substrate configurations have been developed with a “lift-off” approach. However, roll-to-roll manufacturing is desired in future.Therefore, flexible superstrate solar cells were directly grown on commercially available 10 μm thin polyimide (Upilex™) foils. A process for the deposition of ITO (front contact) has been developed to have a stable front contact on the Upilex™ foil. Post-deposition annealing treatments of the ITO/polyimide stacks bring a significant stability to the front contact, having almost the same sheet resistance at the beginning and at the end of the cell fabrication process. Solar cells with AM1.5 efficiency of 11.4% on Upilex™ foils (highest efficiency recorded for flexible CdTe cell) have been developed. A comparison of the cells prepared on different polyimides is presented.  相似文献   

3.
CdTe/CdS solar cells on flexible substrates   总被引:3,自引:0,他引:3  
The development of CdTe/CdS solar cells on flexible substrates is reviewed in this article. Photovoltaic structures on lightweight and flexible substrates have several advantages over the heavy glass based structures in both terrestrial and space applications. The cells mounted on flexible foil are not fragile, the requirements of the supporting structures are minimum and they can be wrapped onto any suitably oriented or curved structures. The specific power of the solar cells is an important factor in space applications and hence development of photovoltaic devices on light weight substrates is interesting. CdTe is one of the leading candidates for photovoltaic applications due to its optimum band gap for the efficient photo-conversion and robustness for industrial production with a variety of film preparation methods. Flexible solar cells with conversion efficiencies exceeding 11% have been developed on polyimide foils. The development of CdTe devices on metallic substrates is impeded due to the lack of a proper ohmic contact between CdTe and the substrate. The polymer substrate has the advantage that the devices can be prepared in both “superstrate” and “substrate” configurations.  相似文献   

4.
This article reports for the first time in the literature, a dye sensitized solar cells with 1.21% efficiency (Voc=0.56 V, Jsc=6.70 mA/cm2 and F.F.=0.33) on paper substrates. The current dye sensitized solar cell technology is based on fluorine doped SnO2 (FTO) coated glass substrates. The problem with the glass substrate is its rigidity and heavy weight. Making DSSCs on paper opens the door for both photovoltaic and paper industries. The potential of using mature paper making and coating technologies will greatly reduce the current PV cost. Paper substrate based DSSCs not only offer the advantages of flexibility, portability and lightweight but also provide the opportunities for easy implantation to textile. In this study, a low temperature process is developed to coat uniform nickel on paper substrate as the metal contact to replace the traditional expensive FTO. The Ni paper showed excellent conductivity of 8-10 Ω/□. It is found that the control of metal oxide electrode morphology is critical to solar cell performance. The TiO2 film has the tendency to crack on Ni coated paper, which resulted in the shunt of the device and no solar cell efficiency was obtained. ZnO film on the other hand had good morphology tolerance on Ni coated paper and yielded solar cell efficiency of 1.21% (Voc=0.56 V, Jsc=6.70 mA/cm2 and F.F.=0.33) under AM 1.5 (activation area is 0.16 cm2). The control sample of ZnO solar cell on FTO glasses has the efficiency of 2.66% (Voc=0.64 V, Jsc=9.97 mA/cm2 and F.F.=0.42).  相似文献   

5.
This study reports the colloidal synthesis of copper indium disulfide (CuInS2) nanoparticles in different crystal phases to be employed as thin film photoanodes in photoelectrochemical water splitting process. First, CuInS2 nanoparticles with chalcopyrite-, zincblende-, wurtzite-as well as polytypic-phases have been synthesized using hot injection method. The effects of solvent, temperature and type of precursors on the phase design have been thoroughly investigated via various spectroscopic techniques such as XRD, SEM, HRTEM, UV-Vis and PL spectroscopy and Zeta particle size analysis. The XRD spectra have been revealed that the all the targeted nanoparticles had good crystallinity and free from undesired binary sulfides. The synthesized nanoparticles have been re-dispersed in N, N-dimethylformamide (DMF) to form nanoink paste and applied on fluorine doped tin oxide coated glass substrate by doctor blade technique. DMF has been found to be an enviable solvent for thin film fabrication since it could lead to the crack free and uniform surface formation. The chalcopyrite thin film has shown the best photoelectrochemical performance with the photocurrent density of ∼15 mA cm−2 and conversion efficiency of 6.7%. Howbeit, thin films photoanodes bearing wurtzite, zincblende and polytypic CuInS2 nanoparticles have been investigated to compare the performance of different crystal phases for photoelectrochemical solar cell applications. Moreover, it should be emphasized that all thin film electrodes have been investigated under 1-sun condition without any surface modification, chemical treatment and etching. Additionally, the thin films except wurtzite structure exhibited good stability along 2 h under dark and illuminated conditions.  相似文献   

6.
CuInSe2/CdS thin-film heterojunction solar cells were fabricated entirely by chemical bath deposition technique. The illuminated JV characteristics of the devices prepared with different thicknesses of CdS and CuInSe2 were studied. The typical solar cell parameters obtained for the best cell are: Voc = 365 mV, Jsc = 12 mA/cm2, FF = 61%, and η = 3.1% under an illumination of 85 mW/cm2 on a cell of active area 0.1 cm2. The JV and CV characteristics under dark condition and the spectral response were also studied for the best cell. The diode quality factor obtained is 1.7.  相似文献   

7.
The preparation of copper indium diselenide (CIS) films by electroless deposition technique is reported. The films have been deposited on molybdenum substrates. The deposition bath consisted of aqueous solutions of copper chloride, indium chloride, selenous acid and lithium chloride. The pH of the bath was adjusted to 2.2 by adding dilute HCl. The Mo substrate was short-circuited with the aluminum counter electrode for the electroless deposition. The films have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDXA), inductively coupled plasma spectroscopy (ICP), Auger electron spectroscopy (AES) and optical spectroscopy. The results indicate that reasonable quality CIS films can be grown by simple electroless deposition process followed by recrystallization in selenium atmosphere.  相似文献   

8.
The present work mainly deals with the testing and modeling of a commercially-available copper indium diselenide (CIS) ST40 module from the former Siemens Solar Industries (SSI). For this purpose, a large quantity of current/voltage characteristics were measured in the Paul Scherrer Institute (PSI)’s photovoltaic test-facility under different cell temperatures, solar irradiation and air mass, AM, conditions. They were used to develop a semi-empirical efficiency model to correlate all measured data sets. The goal was to make available a model, allowing quick and accurate calculation of the performance of the CIS module under all relevant operating conditions.

For the undegraded state of the module, the efficiency model allowed us to deduce the efficiency at Standard Test Conditions, STC, and its temperature coefficient at STC, which were 11.58% and minus 0.050%/°C, respectively. The output of the undegraded module under STC was found to be 42.4 W, i.e., 6% higher than specified by the manufacturer (40 W). Furthermore, the efficiency does not decrease with increasing air mass. At a cell temperature of 25 °C and a relative air mass of 1.5, the module has a maximum in efficiency of 12.0% at an irradiance of about 650 W/m2. This indicates that the series-resistance losses become significant at higher irradiances. Hence, improving the transparent conducting oxide (TCO) electrode on the front side of the cells might lead to a higher output at high irradiances.

Identical testing and modeling were repeated after having exposed the module to real weather conditions for one year. We found that the STC efficiency was reduced by 9.0%, from 11.58 down to 10.54%. The temperature coefficient of the efficiency had changed from minus 0.050 %/°C to minus 0.039%/°C. These results indicate possible chemical changes in the semiconductor film. The output of the module at STC was reduced by 9.0% from 42.4 W down to 38.6 W.

Using meteorological data from a sunny site in the South of Jordan (Al Qauwairah) and the efficiency model presented here allows us to predict the yearly electricity yield of the CIS module in that area. Prior to degradation, the yield was found to be 362 kWh/m2 for the Sun-tracked module; and 265 kWh/m2 for the fix-installed module (South-oriented, at an inclination angle of 30°). After degradation the corresponding yields were found to be 334 and 241 kWh/m2; meaning losses of 8.4% and 9.5%, respectively. (Note: all units of energy, kWh, are referred to the active cell area.) Having available efficiency models for other module types, similar predictions of the yield can be made, facilitating the comparisons of the yearly yields of different module types at the same site. This in turn allows selecting the best module type for a particular site.  相似文献   


9.
Mechanics of thin-film transistors and solar cells on flexible substrates   总被引:1,自引:0,他引:1  
When devices are fabricated on thin foil substrates, any mismatch strain in the device structure makes the work piece curve. Any change of the radius of curvature produces a change in the size of the work piece, and thereby misalignment between individual device layers. To achieve tight tolerances, changes of curvature must be minimized throughout the fabrication process.Amorphous silicon thin-film transistors and solar cells respond differently to externally applied tensile strain. The elastic deformation of the transistor is correlated with small increase in the electron mobility. When the tensile strain reaches 0.34%, crack formation starts and causes an abrupt change in the transistor performance. The performance of solar cells, on the other hand, does not change for tensile strain up to 0.7%. At larger strain the short-circuit current, open-circuit voltage, fill factor, and the efficiency gradually decrease.  相似文献   

10.
Honeycomb-structured solar cell is proposed for photovoltaic building block applications. Honeycomb-like substrates were prepared either by a conventional semiconductor processing or by a low cost wet-chemical method, and amorphous Si thin film solar cells were fabricated on these substrates. We have demonstrated one of the essential requirements for building block application, which is the low sensitivity of the light incidence angles on the power conversion efficiency; and we have identified the critical processing issues through the experimental study using various thin film deposition methods. This honeycomb-structured solar cell is a promising candidate for the future photovoltaic building block applications enabling the inherent high strength-to-weight ratio and higher efficiency at an oblique light incidence.  相似文献   

11.
Investigations on CdTe–CdS solar cells on molybdenum foil substrates revealed that the depletion layer spans the entire CdS and CdTe film thickness and the cell should be conceived as a single junction device instead of the three separate junctions (Mo–CdTe, CdTe–CdS, CdS–TCO). Higher open circuit voltages were achieved when two CdS layers (separated by an air anneal) were used instead of a single CdS layer. The high series resistance of this solar cell continues to be the limiting factor in cell performance. Modeling and design issues for improving cell performance are presented.  相似文献   

12.
In this study, CuInSe2 (CISe) thin films were prepared from thermally evaporated Cu/In precursors, having various Cu/In atomic ratio, under the same selenization conditions. The precursors were converted into CISe absorber by annealing in a quartz tube furnace in the selenium vapours at substrate temperature of 500 °C. We developed four CISe films with Cu/In atomic ratio of 0.81–1.19, denoted as Cu‐very rich, Cu‐rich, Cu‐poor, and Cu‐very poor CISe thin films respectively. The effects of Cu/In atomic ratio on grain size, surface morphology, micro‐structure and defect formation of the resulting CISe films were examined. It has been found that the photovoltaic properties were strongly related to Cu concentration, as well as carrier transport mechanism. Defects at the surface and in the bulk of CISe thin films were observed using X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy, Raman spectroscopy, energy dispersive X‐ray spectroscopy and scanning electron microscopy. Moreover, XRD revealed that the CISe film surface had a preferred orientation along the (112) plane. The XRD intensity and full width at half maximum of the (112) plane of CISe varied according to the Cu/In atomic ratio. Our experimental results show that the Cu‐rich solar cell achieves conversion efficiency of 4.55% and exhibits an exceptional high short‐circuit current density. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Monodisperse, indium doped zinc oxide (IZO) nanoparticles were prepared via the polyol-mediated synthesis and incorporated into regular and inverted poly-(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl C61-butyric acid methyl ester organic photovoltaic devices as buffer layers between the active layer and the cathode. Efficient hole blocking at the particle buffer layers leads to an enhanced open-circuit voltage of the solar cells. This effect is even more pronounced for inverted device architectures. Device degradation studies revealed a solar cell performance reduction upon sample exposition to ambient atmosphere. However, this degradation is fully reversible under UV illumination. In addition, the n-doped IZO particles form suitable charge carrier transport layers for an efficient recombination in an intermediate recombination zone in tandem solar cells. Accordingly we have fabricated fully solution-processed tandem solar cells and investigated their optoelectronic properties.  相似文献   

14.
CdTe/CdS Solar cells on flexible molybdenum substrates   总被引:1,自引:0,他引:1  
Development of CdTe/CdS solar cells on flexible metallic substrates is highly interesting due to the light weight and flexible nature of the solar modules. We have deposited CdTe films onto flexible molybdenum substrates using close-spaced sublimation technique and the CdTe/CdS junction was developed by depositing a thin layer of CdS onto the CdTe substrate from a chemical bath. The devices were characterized by Current–voltage (IV) and photocurrent spectroscopy techniques. Prior to the deposition of the transparent conducting layer, the devices were annealed in air at different temperatures and found that the devices annealed at 400°C have better photovoltaic parameters. The efficiency of a typical device under 60 mW cm−2 illumination was estimated as 3.5%.  相似文献   

15.
The coexistence of different metal cations in single crystal structure may improve electron transfer rate and catalytic activity. Hence, a series of iron-doped nickel selenide nanoparticles were engineered by adjusting the iron amount as counter electrodes (CEs) in dye-sensitized solar cells. By contrast, the as-designed iron-doped nickel selenides possess more excellent electrochemical properties than the pure nickel selenides. In particular, 10% Fe-Ni0.85Se achieves the lowest charge-transfer resistance and highest electrocatalytic performance, outperforming that of Pt. As expected, based on the optimal 10% Fe-Ni0.85Se CE, the dummy dye-sensitized solar cell yields a higher power conversion efficiency of 8.57% compared with that of 15% Fe-Ni0.85Se (8.33%), 5% Fe-Ni0.85Se (8.15%), Ni0.85Se (7.89%), and even Pt CEs (8.04%).  相似文献   

16.
We investigate the long-term stability of performance for plastic dye-sensitized solar cells (DSSCs) based on organic iodides (TBAI or PMII) in methoxypropionitrile-based electrolytes. Plastic DSSCs containing TBAI maintain 96.9% of baseline efficiency under more than 1000 h prolonged one sun light irradiation and thermal stress (60 °C) aging. The factors of device long-term stability, such as the effects of organic iodides, cell-sealing conditions, and the sheet resistance of indium tin oxide coated polyethylene naphthalate substrate (ITO/PEN) are discussed via using electrochemical impedance spectroscopy and electrical resistance measurement.  相似文献   

17.
In this paper, we present data on the electrical properties of 50 gm thick space silicon BSFR cells irradiated with 10 MeV protons with a fluence exceeding 1 x 1013 p/cm2 and irradiated with 1 MeV electrons with a fluence exceeding 1 x 1016 e/cm2, and discuss the anomalous degradation which was found in these large-fluence regions. These data show an increase of saturation current density and a decrease of diffusion voltage of the pn junction, and a decrease of majority carrier density and an increase of series resistance of the p-substrate as a result of the formation of a large amount of carrier traps by the large-fluence irradiation.  相似文献   

18.
Tungsten doped indium oxide (IWO) thin films have been investigated as an alternative to indium tin oxide (ITO) anodes in organic solar cells (OSCs). The surface morphology, electrical, and optical properties of the IWO films grown by electron beam deposition were studied as a function of oxygen flow rate. For 120 nm thick IWO films deposited on float glass substrates at 350 °C and oxygen flow rate of 35 sccm, an electrical resistivity of 4.78×10−4 Ω cm and average transmittance of over 78% between 400 and 2000 nm were obtained. OSCs based on poly(3-hexylthiophene) and [6,6]-phenyl C61-butlyric acid methyl ester were prepared on glass/IWO electrodes and the device performance was investigated as a function of IWO films with different oxygen flow rates. OSCs fabricated on the optimum IWO anode (oxygen flow rate of 30-35 sccm) exhibited a power conversion efficiency of ∼3.5%, which is comparable with the same device made on commercial glass/ITO electrodes (3.75%).  相似文献   

19.
We report on the photovoltaic performance of Ag2Se quantum-dot (QD) sensitized solar cells. The QDs are grown by the successive ionic layer adsorption and reaction process. The external quantum efficiency (EQE) spectrum of the assembled cells covers the entire solar power spectrum of 350-2500 nm with an average EQE of ∼80% in the short-wavelength region (350-800 nm) and 56% over the entire solar spectrum. The effective photovoltaic range is ∼7-14 times broader than that of the cadmium calcogenide system—CdS and CdSe. The photocurrent that Ag2Se generates is four times higher than that of N3 dye. The best solar cell yields power conversion efficiencies of 1.76% and 3.12% under 99.4% and 9.7% sun, respectively. The results show that Ag2Se QDs can be used as a highly efficient broadband sensitizer for solar cells.  相似文献   

20.
Stainless steel (StSt) has been applied as substrate material for efficient, flexible, nanoporous TiO2 dye-sensitized solar cells (DSSCs) with the aim of improving the photochemical properties of current plastic-based flexible DSSCs. DSSCs with a StSt substrate show almost equivalent properties in efficiency and convenience to cells with a F-doped tin oxide (FTO) glass substrate. Specifically, the metal substrate allows application of high-temperature sintering processes and shows high conductance even after sintering. Cells fabricated with the StSt substrates have been investigated as individual cells and as modules. A comparison between conventional DSSCs with a FTO glass substrate and flexible DSSCs with a StSt substrate is presented. In addition, Pt-coated electrodes, which can serve as window electrodes for StSt-based DSSCs, are fabricated via two different methods, i.e., chemical reduction and annealing, and compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号