首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
为了研究障碍物对油气泄压爆炸火焰传播特性的影响规律,进行了不同数量障碍物工况下的对比实验,并利用纹影仪和高速摄影仪记录了火焰传播过程,针对障碍物对火焰形态、火焰锋面位置及火焰传播速度的影响规律进行了研究,结果表明:圆柱体障碍物会导致油气泄压爆炸火焰形态产生褶皱和弯曲变形,诱导层流火焰向湍流火焰转变,加速火焰的传播,对油气泄压爆炸火焰的初始传播形态有显著影响;随着障碍物数量的增多,火焰锋面传播距离点火端的最大距离增大,但到达最远距离的时间减少;障碍物能够增强火焰的传播速度,尤其对障碍物下游火焰影响最为显著,随着障碍物数量的增多,火焰传播的最大速度也随之增大,但达到最大火焰传播速度的时间却随之减少;障碍物的存在增大了油气泄压爆炸过程外部爆炸压力,并且随着障碍物数量的增多,外部爆炸压力峰值增长幅度增大。  相似文献   

2.
巷道中瓦斯爆炸诱导激波传播特性研究   总被引:3,自引:1,他引:2  
利用AutoReaGas软件,数值模拟巷道中瓦斯浓度和火源对瓦斯爆炸传播的影响,其计算结果表明:爆炸静态超压随着传播距离的增加而减小,而爆炸动压随着传播距离的增加而增大;点火位置距离巷道封闭端越近,各测点得到的爆炸静态超压值越大;瓦斯浓度对爆炸峰值超压影响显著,当浓度为9.5%的氧化反应当量比浓度时,得到的最大峰值超压为70.95kPa,爆炸威力最大。  相似文献   

3.
加气站压缩机间气体爆炸数值模拟研究   总被引:1,自引:0,他引:1  
加气站压缩机间安全设计时,需要评估内部气体爆炸危害,确定爆炸能量和影响因素。采用CFD技术,建立加气站压缩机间三维模型,模拟不同点火源位置、泄压板不同泄压压力和重量下,压缩机间气体爆炸时的爆炸压力及火焰传播行为。结果表明点火源位置以及泄压参数是影响加气站压缩机间气体爆炸的重要因素;点火源位置距离压缩机间放空位置越近,爆炸压力越小;对于泄压参数,爆炸压力与泄压板开启压力和重量之间均为正比关系。为减缓压缩机间内的气体爆炸危害,需要合理布置点火源位置,选择容重轻、泄压压力小的泄压材料,并同时需要考虑爆炸导致的物体破碎危害以及火焰次生灾害。  相似文献   

4.
为了解泄爆容器中粉尘爆炸的发展过程,采用试验和数值模拟相结合的方法对玉米淀粉在圆柱形容器内的泄爆过程进行研究。数值模型采用欧拉–拉格朗日方法模拟粉尘爆炸的两相流问题,通过求解非稳态的湍流两相反应流守恒方程对试验进行二维仿真。试验和模拟结果表明,点火位置对爆炸发展过程有明显影响,点火位置离泄爆口越远,容器中的最大泄爆压力Pred,max越高。在粉尘爆炸的安全防护设计中,应把点火位置作为重要影响因素之一加以考虑。  相似文献   

5.
为研究半受限空间油气无约束泄爆外场特性,基于爆炸力学、可燃气体爆炸超压评估法则和化学动力学等理论,建立评估外场爆燃超压的无量纲比例距离模型;采用模拟试验的研究方法,测量外场爆燃超压并记录火焰形态变化过程;基于此,分析外场超压与火焰形态变化规律,提出外场超压-比例距离变化半经验公式。结果表明:外场横纵方向上最大爆燃超压与比例距离成负指数函数关系;流场与火焰间的正反馈作用决定了火焰传播过程中的形态变化。  相似文献   

6.
为了研究墨粉在爆炸泄压过程中燃烧与流动的变化机制,通过改变泄爆片尺寸、墨粉浓度以及泄爆片的惯性力等参数对爆炸泄放过程中反应釜中压力以及外场火焰形态变化进行试验研究,同时与完全封闭空间内不同墨粉浓度的压力曲线对比。研究结果表明:相同泄爆开口尺寸下,粉尘浓度与受控爆炸压力(采用爆炸泄压保护措施后工业腔体内产生的压力)负相关;开口尺寸增加可以提升泄压效率;结合外场火焰形态的变化情况揭示声动火焰不稳定性对反应釜中压力发展的影响;通过无惯性泄爆试验的对比证明泄爆片惯性对受控爆炸压力的影响不可忽视。  相似文献   

7.
柱形压力容器开口泄爆过程数值模拟研究   总被引:4,自引:1,他引:3  
为研究柱形压力容器泄爆规律,采用经典流体力学软件FLUENT对典型的柱形压力容器泄爆过程进行数值模拟,分析从泄爆口开启到泄压结束时间段压力发展、火焰传播、气体流动及可燃气体浓度变化特性。结果表明:不同泄爆压力下容器内压力发展变化呈现不同特点,在较小泄爆压力情况下会出现压力再度上升的双峰现象。泄爆过程中产生的湍流沿泄爆口附近容器壁拉长火焰面,并加快燃烧速率。同时就容器内不同点火位置对爆炸强度影响进行研究,得出在泄爆压力为0.04 MPa时,底面点火对本柱形压力容器产生的最大升压速率约为中心点火最大升压速率的1.4倍。  相似文献   

8.
为研究密闭容器内甲烷-空气不均匀分布对混合气体燃烧的影响,将数值模拟和实验相结合,发现在重力作用下混合气体浓度分布不均匀,长径比越大的容器,混合气体浓度分布梯度越大。混合气体浓度分布影响气体火焰传播规律。宏观浓度为5%的甲烷与空气混合后,容器上部甲烷浓度高于5%,在该处点火时非均匀混合甲烷-空气火焰传播较快,非均匀混合气体的爆炸压力比均匀混合气体压力上升快,且分层混合气体的超压峰值高于均匀混合气体的值。由于浓度分布不均匀,点火位置影响甲烷/空气火焰传播的规律。  相似文献   

9.
为研究新型网状高分子材料对油气爆炸的抑制作用,搭建了狭长受限空间油气爆炸抑制实验系统,进行了油气爆炸抑制实验,通过对比是否按留空率规范填充抑爆材料所达到的3种工况,分析了爆炸超压值、升压速率、火焰强度和火焰持续时间等特性参数变化情况。实验结果表明:新型网状高分子材料对油气爆炸产生的最大爆炸超压值、升压速率和火焰强度有明显的抑制作用;新型网状高分子材料对火焰的传播有明显的阻滞作用,使火焰传播速度减小;当新型材料按照规范填充时,最大爆炸超压值和升压速率分别下降了84.36%和 39.18%以上,火焰被完全熄灭,并且距离点火端越远,抑爆效果越明显。  相似文献   

10.
为了进一步探究瓦斯煤尘爆炸火焰的传播规律,在自行设计搭建的半封闭竖直管道内,选用褐煤、烟煤和无烟煤3种煤样分别进行爆炸试验,并通过改变煤尘质量浓度来观察不同煤种条件下瓦斯煤尘爆炸反应强度,研究不同煤种条件下煤尘质量浓度对瓦斯煤尘耦合爆炸火焰传播规律的影响。结果表明,在瓦斯体积分数和煤尘质量浓度相同的条件下,褐煤爆炸产生的火焰传播速度最大,无烟煤最小。这是因为褐煤的挥发分含量较高,而影响爆炸火焰传播速度的主要原因是煤尘在加热情况下释放出的可燃气量,即煤种的挥发分含量,挥发分含量越大,瓦斯煤尘爆炸火焰传播速度也就越大。褐煤和烟煤的火焰传播速度随火焰传播距离增加而增加,直至传播至管道外部;无烟煤的火焰传播速度随火焰传播距离增加呈现先上升后下降的状态。在试验中,3种煤种和瓦斯爆炸时产生火焰最大传播速度的位置距离爆炸源较远。瓦斯煤尘爆炸产生的火焰稳定性较差,在传播过程中速度变化不稳定,存在较大的波动。火焰传播速度与煤尘质量浓度不成正比,在一定范围内,适当增加煤尘质量浓度可以大大提高瓦斯煤尘爆炸的反应强度,且存在一个最佳的煤尘质量浓度50 g/m3,使火焰传播速度达到最大。  相似文献   

11.
为研究高密度聚乙烯(HDPE)粉尘燃爆及其泄爆特性,通过结合热重(TG)和差示扫描量热(DSC)分析高密度聚乙烯燃爆机理,利用20 L球形爆炸测试系统、最小点火能测定仪、最低着火温度测定仪等探究粉尘质量浓度对最小点火能(MIE)、最低着火温度(MIT)、最大爆炸压力(Pmax)和爆炸指数(Kst)的影响;在300 g/m3爆炸浓度及以上时,分析高密度聚乙烯泄放特性并探究在不同质量浓度下的泄放火焰特征。研究结果表明:随着HDPE粉尘质量浓度增加,最大爆炸压力先增加后减小、最低着火温度和最小点火能先减小后增加;泄爆压力峰值随着HDPE粉尘泄爆膜层数增加而升高,随着泄爆口径的增大而下降;在质量浓度为300 g/m3时,出现2次火焰长度较大值,且第2次泄放火焰更亮,燃烧面积更大;在质量浓度为400 g/m3时,产生2次火焰。研究结果可为预防聚乙烯粉尘爆炸事故以及减小相应事故损失提供参考。  相似文献   

12.
为探究混合金属粉尘爆炸危险性及与单一粉体爆炸特性差异,确保车间安全生产,采用粉尘云点火能量测试系统对车间混合金属粉尘及铝粉最小点火能量在不同影响因素下的变化规律及2种粉尘火焰变化特征进行测试。研究结果表明:混合金属粉尘和铝粉最小点火能量在一定范围内(38~96 μm)与粒径呈正相关性,当混合金属粉尘粒径大于75 μm时,所需最小点火能量大于1 000 mJ,其爆炸敏感性迅速降低,此时铝粉仍有较强爆炸敏感性;2种粉尘最小点火能量随质量浓度增加呈先降低后升高的趋势,最小点火能分别为295,15 mJ,对应的敏感质量浓度为600,1 000 g/m3,混合金属粉尘在质量浓度为500~700 g/m3时具有较大爆炸危险性;同铝粉相比,混合金属粉尘点火能量更高、火焰燃烧时间更短、火焰高度更低、爆炸剧烈程度更弱。  相似文献   

13.
为研究瓦斯爆炸诱导煤尘爆炸在不同拐弯巷道内的传播特征,首先采用不同角度拐弯管道模拟煤矿井下拐弯巷道结构;然后利用煤尘爆炸试验系统,通过试验监测管道内不同位置的冲击波压力值和火焰传播速度值;最后研究不同拐弯角度管道内瓦斯爆炸诱导煤尘爆炸冲击波和火焰在拐弯前后的变化特征。结果表明:瓦斯填充长度一定的情况下,沉积煤尘爆炸冲击波峰值超压先减小后增大,到达管道拐弯后,急剧减小;冲击波峰值超压衰减率随着管道拐弯角度的增大而增大,角度越大,峰值超压衰减越快;火焰传播速度先增大后减小,经过拐弯管道后,速度突然增加;火焰传播速度变化率随拐弯角度的增大而增大,角度越大,速度增幅越大。  相似文献   

14.
点火位置对独头巷道中瓦斯爆炸超压的影响   总被引:7,自引:0,他引:7  
运用AutoReaGas爆炸仿真模拟器研究了独头巷道中点火位置对瓦斯爆炸后果的影响。结果表明,在本计算条件下,爆炸静态超压随着距离的增加而减小,爆炸动压随着距离的增大而增大,点火位置对爆炸后果有重要影响,点火位置离封闭端越近,各个测点上所得到的超压越大。  相似文献   

15.
为研究泄爆夹层内障碍物位置对燃气泄爆效果的影响,以某大型商业综合体暗厨房为研究对象,考虑泄爆夹层中结构梁不同位置的泄爆效果,对暗厨房燃气爆炸的泄爆过程开展数值模拟研究。研究结果表明:在火焰没有到达泄爆窗前的爆炸初始阶段,障碍物对火焰结构和传播速度基本没有影响,当火焰进入泄爆夹层后,障碍物的存在可引发火焰加速现象;当障碍物距离泄爆窗1.7 m时,火焰加速现象较为明显,火焰最大传播速度可达591.5 m/s,此时厨房内压力峰值约2.9 MPa,约为没有结构梁情况下1.42倍;障碍物距离泄爆窗较近时,二者将协同影响火焰传播;厨房内压力峰值随着障碍物与泄爆窗距离的增大遵循增大-突降-增大的规律。研究结果可为商业综合体暗厨房泄爆设计提供一定理论依据。  相似文献   

16.
设计了球形容器内气体爆炸通过导管泄爆的试验系统,选用体积分数为10%(特殊说明除外)的甲烷和空气预混气体开展试验,研究了泄爆导管长度、容器容积、点火位置、气体体积分数、破膜压力等因素的影响。结果表明:泄爆导管越长,容器内的正压力峰值和负压力峰值越大;密闭爆炸时,球形容器的容积对爆炸压力峰值几乎无影响;不同容积球形容器内气体爆炸通过相同导管泄爆时(导管长度均为6 m,直径均为0.06 m),容积大的容器内的压力锋值为小容器压力值的3.3倍,且大容器内的压力上升速率也明显高于密闭爆炸的情况;有泄爆导管存在时,尾部点火容器内的压力峰值高于中心点火;泄爆导管的存在使得容器内的压力峰值高于直接泄爆时的压力峰值;无论有、无泄爆导管,容器内的压力峰值均随破膜压力增加而增加,但差值越来越小,说明导管的存在对容器爆炸泄爆过程的影响趋向缓和,但导管的存在总是阻碍了泄爆过程,增加了爆炸的严重程度,因此,在泄爆设计时要充分考虑导管的影响,适当提高容器自身的耐压强度。  相似文献   

17.
为了研究对称障碍物条件下瓦斯爆炸压力波与火焰传播的耦合作用,在150 mm×150 mm×1 700 mm的有机玻璃瓦斯爆炸管道中,距离点火端不同距离安装0.5阻塞率的对称障碍物,进行8.5%甲烷体积分数的爆炸试验,采集瓦斯爆炸的超压信号并同步拍摄火焰传播图像。结果表明:火焰穿越板式对称障碍物的过程经历了火焰加速、火焰降速到火焰再加速的过程,火焰降速的时间仅为5 ms。距离点火焰源不同长度的对称障碍物在火焰加速过程中的作用存在明显差异,近点火源的障碍物作用主要为诱导湍流,远离点火源的障碍物作用主要为湍流增强。  相似文献   

18.
为研究不同长度分支管道对油气爆炸强度的影响,搭建不同分支管道试验系统。分别在直管道中和带有分支管道的直管道中进行油气体积分数为1.75%的爆炸试验,并分析爆炸超压值、升压速率、火焰传播速度以及火焰强度等特性参数变化情况。试验结果表明,分支管道对直管内的爆炸超压、升压速率、火焰传播速度、火焰强度和火焰持续时间有强化作用,并且分支管道越长,强化作用越显著,但是较短的分支管道由于面积突扩导致的泄压效应和管壁耗散效应占主导地位,使得分支管道后火焰传播速度下降。  相似文献   

19.
小型管道中瓦斯爆炸火焰传播特性的实验研究   总被引:2,自引:7,他引:2  
自行设计了内径88mm、壁厚6mm、总长1600mm、点火孔20mm的小型瓦斯爆炸实验管道,结构简单、操作方便,具有可观察性。采用高速摄录分析系统,对不同浓度瓦斯爆炸初期火焰传播特性进行了实验研究。结果表明:瓦斯爆炸初始阶段,火源引爆瓦斯到形成明显的、大强度的火焰传播的时间约为10~30ms;随着瓦斯浓度增大,爆炸感应期逐渐变短;瓦斯爆炸的火焰传播有一个突变过程,瓦斯浓度越大,达到突变的时间越短;当燃烧波在开始移动到5~10倍巷道宽度距离后,便开始明显加速,达到爆燃;当瓦斯爆炸火焰冲出管道时,爆炸火焰速度又一次加快。实验结果验证了该实验台研究瓦斯爆炸是可行的。  相似文献   

20.
为探究超细粉体惰化剂对铝合金抛丸伴生粉尘爆炸特性的影响规律,利用标准化Hartmann试验装置及自行搭建的试验平台,对不同惰化比(ε)条件下高纯度铝粉尘和铝合金抛丸废弃物粉尘爆炸传播特性进行试验研究。试验结果显示:不同类型的铝粉尘在不同惰化比条件下的爆炸敏感度、爆炸传播强度以及爆炸火焰传播形态演化等方面特性存在较大差异。由于高纯度铝粉尘燃烧反应活性高,最小点火能量和爆炸下限质量浓度分别是铝合金抛丸废弃物粉尘的6%和53.3%,其爆炸火焰传播速度峰值是铝合金抛丸废弃物粉尘的2.1倍。因此,在工程实践中不宜将高纯度铝粉尘相关爆炸参数作为铝合金抛丸作业现场燃烧爆炸风险评估依据。同时,当惰化比提高到30%时,铝合金抛丸废弃物粉尘的点火敏感性大幅降低,爆炸无法形成有效火焰进而传播,且在爆炸发生后很短时间内便会发生自行熄灭,即使在强点火条件下,也未发生火焰持续传播现象。因此,在铝合金抛丸生产现场采用添加一定量超细Al(OH)3粉体以作为抑爆措施的惰化剂具有一定的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号