首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 (NBT–KBT) system, with its complex perovskite structure, as a promising material for piezoelectric applications. The NBT–KBT samples were synthesized using a solid-state reaction method and characterized with XRD and SEM. Room-temperature XRD showed a gradual change in the crystal structure from tetragonal in the KBT to rhombohedral in the NBT, with the presence of an intermediate morphotropic region in the samples with a compositional fraction x between 0.17 and 0.25. The fitted perovskite lattice parameters confirmed an increase in the size of the crystal lattice from NBT towards KBT, which coincides with an increase in the ionic radii. Electrical measurements on the samples showed that the maximum values of the dielectric constant, the remanent polarization and the piezoelectric coefficient are reached at the morphotropic phase boundary (MPB) (? = 1140 at 1 MHz; Pr = 40 μC/cm2; d33 = 134 pC/N).  相似文献   

2.
High-temperature reactions during the solid-state synthesis of samples from the (1-x)Na0.5Bi0.5TiO3–xSrTiO3 system were investigated. Due to the number of chemically different elements, the processing of these ceramics is delicate and requires several firing steps under specific conditions to obtain phase-pure samples. Sintering in an air atmosphere resulted in a macroscopically inhomogeneous microstructure, which is a consequence of incomplete reaction between different secondary phases. However, prolongation of the sintering time aggregated the pores in the sample, while at a higher firing temperature the sample’s secondary phase melted. As a result, the nominal composition was altered, leading to the formation of the Na2Ti6O13 secondary phase. Sintering under an increased oxygen pressure of 1 MPa limited the evaporation of the secondary phase. This allowed the completion of the reaction, forming a homogeneous and dense sample. The study provides a set of experimental conditions for the successful preparation of ceramics from the investigated system.  相似文献   

3.
《Ceramics International》2014,40(6):7947-7951
Lead free (1−x)(0.8Bi0.5Na0.5Ti0.5O3–0.2Bi0.5K0.5TiO3)–xBiZn0.5Ti0.5O3 (x=0–0.06) (BNT–BKT–BZT) thin films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by a sol–gel processing technique. The effects of BZT content on the structural, dielectric, ferroelectric and piezoelectric properties of the BNT–BKT–BZT thin films were investigated systematically. The BNT–BKT–BZT thin films undergo a transition from ferroelectric to relaxor phase with increasing temperature. The phase transition temperature decreases with the increase of BZT content. The BNT–BKT–BZT thin film with x=0.04 exhibits the best ferroelectric properties (Pmax=40 µC/cm2 and Pr=10 µC/cm2), largest dielectric constant (ε=560) and piezoelectric constant (d33=40 pm/V). This finding demonstrates that the BNT–BKT–BZT thin film has an excellent potential for demanding high piezoelectric properties in lead free films.  相似文献   

4.
The lead-free piezoelectric material sodium bismuth titanate (NBT, Na0.5Bi0.5TiO3) has attracted considerable attention owing to its promising dielectric, piezoelectric, and electrical properties. However, the literature on the binary subsystems is contradictory and there are only limited data for the ternary system. The present work surveys all of the reports of the binary subsystems Bi2O3 – TiO2 and Na2O – TiO2 and synthesizes these data into inclusive revised versions. The compatibilities for the ternary system Na2O – Bi2O3 – TiO2 were determined experimentally, thus enabling the construction of a complete isothermal section at 800 °C. The compatibilities associated with the problematic binary subsystem Na2O – Bi2O3, which experiences extreme volatilisation, were determined through the generation of the absent standard-state thermodynamic functions for the relevant binary and ternary phases, thus providing a full suite of thermodynamic data for this system. The thermodynamic stability diagrams for Na2O, Bi2O3, and TiO2 thus were calculated. The isothermal section also addresses the contradictions in the literature concerning the formation of solid solutions of Bi12TiO20-x / Bi12-xTi1+xO20+0.5x, pyrochlore (Bi2Ti2O7 / NawBi2-xTi2-yO7-z), BTO (Bi4Ti3O12 / NaxBi4Ti3O12+0.5x), and NBT (Na0.5Bi0.5TiO3 / Bi1±xNaxTiO3.5±x). Further, it was observed that the congruent melting point of NBT, which was determined to be 1225 °C, was preceded by the onset of gradual structural destabilization at 940 °C. Also, the NBT rhombohedral → tetragonal phase transformation was observed at an onset temperature of ∼250 °C. The present work thus provides platform data for the fabrication and reactivities of materials in the ternary system Na2O – Bi2O3· TiO2 and its binary subsystems.  相似文献   

5.
Lead-free relaxor ferroelectric ceramics (1?x)(K0.5Bi0.5)TiO3xBi(Ni0.5Ti0.5)O3 were prepared by a conventional solid-state route, the phase transition behavior and corresponding electrical properties were investigated. A typical morphotropic phase boundary (MPB) between rhombohedral and tetragonal ferroelectric phases was identified to be in the range of 0.05<x<0.07 where the optimum piezoelectric and electromechanical properties of d33=126 pC/N and kP=18% were achieved. Most importantly, a high Curie temperature ~320 °C, around which the material shows a typical relaxor ferroelectric behavior characterized by the presence of diffuse phase transition and frequency dispersion, was obtained in MPB compositions, significantly higher than those of some existing MPB lead-free titanate systems. These results demonstrate a tremendous potential of the studied system for device applications.  相似文献   

6.
In this work, solid solutions of (0.88–x)Bi0.5Na0.5TiO3–0.12BaTiO3– xBa(Ti0.5Ni0.5)O3–δ were designed and prepared. These compositions exhibit ferroelectricity at room temperature, with the tetragonal symmetry. The c/a values are varied from ~1.0067 (x?=?0.1) to ~1.0208 (x?=?0.04). A transition from the high–temperature relaxor state to the low–temperature ferroelectric state is demonstrated by the temperature dependence of dielectric data and Raman spectrum. The direct bandgap decreases from 3.40?eV for x?=?0 to 3.16?eV for x?=?0.1. The Ba(Ti0.5Ni0.5)O3–δ addition leads an additional optical absorption peak in the visible range. The obvious photodielectric effect was discovered. In particular, the relative permittivity of the x?=?0.1 composition rises from ~756 to ~807 under light illumination.  相似文献   

7.
8.
(1−x)La(Mg0.5Ti0.5)O3 (LMT)–xCaTiO3 (CT) [0<x<1] ceramics were prepared from powder obtained by a nonconventional chemical route based on the Pechini method. The crystal structure of the microwave dielectric ceramics has been refined by Rietveld method using X-ray powder diffraction data. LMT and CT were found to form a solid solution over the whole compositional range. The 0.9LMT–0.1CT composition was refined using P21/n space group, which allows taking into account B-site ordering. The compounds having x⩾0.3 were found to be disordered and were refined using Pbnm space group. Microstructure evolution was also analysed. Dielectric characterization at microwave frequencies was performed on the LMT–CT ceramics. The permittivity and the temperature coefficient of resonant frequency of the solid solutions showed a non-linear variation with composition. The quality factor demonstrates a considerable decrease with the increase of CT content.  相似文献   

9.
《Ceramics International》2016,42(13):14886-14893
Lead–free piezoelectric ceramics (Bi0.5Na0.5)0.935Ba0.065Ti1–x(Mn0.5Sb0.5)xO3 (BNBT6.5–xMS, x=0.005, 0.010, 0.015, 0.020) were prepared by conventional solid state reaction sintering technique. All ceramics present a pure perovskite phase structure, indicating that (Mn, Sb) has completely diffused into the BNBT6.5 lattice in the studied components. The addition of (Mn, Sb) disrupted the ferroelectric long–range order and promoted the electric field induced strain response. At x=0.015, a large electric field–induced unipolar strain of 0.48% (at an applied electric field of 80 kV/cm) with normalized strain d33*(Smax/Emax) of 602 pm/V are achieved. Temperature dependent measurements of both polarization and strain from room temperature to 120 °C were also studied, and the results suggest that the origin of the large strain is due to a reversible field–induced non–polar relaxor phase to polar ferroelectric phase transformation.  相似文献   

10.
《Ceramics International》2023,49(6):9615-9621
Bi0.5Na0.5TiO3 (BNT) lead-free ceramics have been extensively studied due to their excellent dielectric, piezoelectric and ferroelectric properties. The phase structure and functionalities of BNT can be feasibly adjusted by doping/forming solid solutions with other elements/components. In this work, Bi(Mg2/3Nb1/3)O3 (BMN) was introduced into BNT by a conventional solid-state reaction to form a homogeneous solid solution of (1-x)(Bi0.5Na0.5)TiO3-xBi(Mg2/3Nb1/3)O3 (BNT-xBMN) with a perovskite structure. With the increase of BMN content, a phase transition from rhombohedral R3c to tetragonal P4bm has been confirmed by XRD, along with shifting the ferroelectric-paraelectric phase transition temperature to lower temperatures with broadening dielectric peaks. Furthermore, an optimized recoverable energy density of 1.405 J/cm3 was achieved for BNT-0.10BMN ceramics under a low applied electric field of 140 kV/cm, which is mainly attributed to the transformation from ferroelectric to ergodic relaxor phase.  相似文献   

11.
12.
Structure, dielectric permittivity, strain, electric (E) polarization, and piezoelectric responses of (Bi1/2Na1/2)0.925Ba0.075(Ti1−xZrx)O3 (BNT7.5BT-100xZr; x = 0–0.04) ceramics were investigated as functions of poling E field and temperature. The BNT7.5BT ceramic reveals a phase transition from P4bm nanodomains to long-range-ordered P4mm domains. The Zr-doped BNT7.5BT ceramic reveals a reversible change of unit cell with dynamically fluctuating polar nanoregions, which are responsible for the large strain. The poled BNT7.5BT ceramic displays a depolarization temperature of Td = 90 °C, which correspond to a phase transition from ferroelectric to relaxor states. The Zr-doped BNT7.5BT ceramics have Burns temperatures (TB) in the region of 400–435 °C, below which polar nanoregions begin to develop. The Zr-doped BNT7.5BT ceramics display wide diffuse phase transitions, suggesting a transition from R + T to T phases. BNT7.5BT-2Zr ceramic shows a temperature dependent linear large strain of 0.482% at 150 °C and can be a potential candidate for lead-free actuator.  相似文献   

13.
In ferroelectric materials high electric field-induced strain (EFIS) with good thermal stability is of much interest from both fundamental research and potential applications. Here we propose a strategy to achieve high thermally stable EFIS based on electrostrictive effect and thermal stability of polarization. According to this strategy, we synthesized (1−x)(Bi0.5Na0.5)TiO3-xBa0.85Ca0.15Ti0.9Zr0.1O3 (BNT-xBCZT) ferroelectric ceramics in order to tailor the thermal stability of dielectric permittivity, polarization and EFIS. A dielectric platform with a wide temperature region is induced by increasing x from 0.24 to 0.36 gradually. From 30 °C to 150 °C, a variation of 20% polarization results in a change of 36% EFIS, suggesting a good thermal stability as expect. Temperature-insensitive electrostrictive coefficient Q33 ranges from 0.0264 m4/C2 to 0.0314 m4/C2. These results not only prove the effectiveness of this strategy, but also suggest that this strategy can be applied to other ferroelectric materials to improve the thermal stability.  相似文献   

14.
《Ceramics International》2016,42(12):13783-13789
Lead-free (1−x)(0.0852Bi0.5Na0.5TiO3–0.12Bi0.5K0.5TiO3–0.028BaTiO3)–xCaZrO3 piezoelectric ceramics (BNT−BKT−BT−xCZ, x=0, 0.01, 0.02, 0.03, 0.04 and 0.05) were prepared by using a conventional solid-state reaction method. The effects of CZ-doping on the structural, dielectric, ferroelectric and piezoelectric properties of the BNT−BKT−BT−xCZ system were systematically investigated. The polarization and strain behaviors indicated that the long-range ferroelectric order in the unmodified BNT−BKT−BT ceramics was disrupted by the increase of CZ-doping content, and correspondingly the depolarization temperature (Td) shifted down from 109 °C to below room temperature. When x>0.03, accompanied with the drastic decrease in the remnant polarization (Pr) and piezoelectric coefficient (d33), the electric-field-induced strain was enhanced significantly. A large unipolar strain of 0.35% under an applied electric field of 70 kV/cm (Smax/Emax=500 pm/V) was obtained in the BNT−BKT−BT−0.04CZ ceramics at room temperature, which was attributed to the reversible electric-field-induced phase transition between the relaxor and ferroelectric phases.  相似文献   

15.
采用固相法制备了 Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3–BaTiO3–SrTiO3(NBT–KBT–BT–ST)陶瓷,该体系是按(1–2x)(0.8NBT–0.2KBT)–x(0.94NBT–0.06BT)–x(0.74NBT–0.26ST) (x = 0.10、0.20、0.25、0.30、0.35、0.40、0.45)组合而成的,研究了该系陶瓷的结构与电性能。结果表明:所有样品都处于三方–四方准同型相界区域。该系陶瓷在准同型相界附近表现出了优异的压电性能,压电常数 d33、机电耦合系数 kp和剩余极化强度 Pr随 x 的增加先升高后降低,其中 x=0.35 陶瓷的电性能最佳:d33= 210 pC/N,kp= 0.319,Pr= 39.3 μC/cm2,Ec= 20.2 kV/cm,是一种良好的无铅压电陶瓷候选材料。依据准同型相界组成的线性组合规律来寻找具有优异压电性能的 NBT–KBT–BT–ST 陶瓷准同型相界组成是可行的。  相似文献   

16.
《Ceramics International》2016,42(8):9660-9666
Lead-free 0.99[(1−x)(Bi0.5Na0.5)TiO3-x(Bi0.5K0.5)TiO3]–0.01Ta piezoelectric ceramics were prepared by a conventional solid-state reaction process. The ferroelectric properties, and strain behaviors were characterized. Increase of the (Bi0.5K0.5)TiO3 content induces a phase transition from coexistence of ferroelectric tetragonal and rhombohedral to a relaxor pseudocubic phase. Accordingly, the ferroelectric order is disrupted significantly with the increase of (Bi0.5K0.5)TiO3 content and the destabilization of the ferroelectric order is accompanied by an enhancement of the unipolar strain, which peaks at a value of 0.35% (corresponding to a large signal d33 of 438 pm/V) in samples with 20 mol% (Bi0.5K0.5)TiO3 content. Temperature dependent measurements of both polarization and strain from room temperature to 120 °C suggested that the origin of the large strain is due to a reversible field-induced nonpolar pseudocubic-to-polar ferroelectric phase transformation.  相似文献   

17.
This work examines the relaxor behavior of lead-free ceramic (1 − x)Na0.5Bi0.5TiO3xCaTiO3 systems. A stable rhombohedral (R3c) phase is detected at room temperature for all compositions by XRD and Raman spectroscopy. Relaxor behavior was observed in the temperature range 300 K - 400 K for all materials. Ceramics exhibit normal ferroelectric properties at room temperature, and then they develop relaxor characteristics with increasing temperature showing the same dispersive properties. This work quantifies the relaxor phenomenon at low temperature. For instance, the maximum temperature of relaxor and the order of dispersion were determined at the strongest dispersion. Finally, the substitution by low CT concentration unaltered the relaxor behavior at low temperature.  相似文献   

18.
Fine powders synthesized via sol-gel route were employed to fabricate Sr(2−x)(Na0.5Bi0.5)xBi4Ti5O18 (SNBT, where x = 0, 0.1, 0.25, 0.3, 0.4, and 0.5) ceramics. The composition (x)-dependent structural changes associated with SNBT ceramics were analyzed using X-ray powder diffraction, transmission electron microscopy, and Raman spectroscopic techniques. Average grain size analyses carried out on the SNBT ceramics by scanning electron microscopy revealed an important role played by the dopants in inhibiting the grain growth. Dielectric constants and the Curie temperature of the ceramics were found to decrease and increase, respectively, with increase in x. The increase in Curie temperature with increase in x was attributed to the decrease in the tolerance factor. The specific composition (x = 0.3) of the SNBT ceramics exhibited improved piezo- and ferroelectric properties associated with a higher Curie temperature (569 K). The piezoelectric coefficient (d33) and the planar electromechanical coupling coefficient (kp) of SNBT(x = 0.3) were enhanced by 25% and 42%, respectively, as compared to the undoped ceramics.  相似文献   

19.
《Ceramics International》2022,48(16):23481-23491
Eu3+-doped lead-free piezoelectric ceramics, 0.937Na0.5Bi0.5?xEuxTiO3-0.063BaTiO3 (abbreviated as NBExT-BT, where x = 0, 0.003, 0.005, 0.01, 0.013, 0.015, 0.017, and 0.02), were synthesized using a conventional solid-state synthesis method. All the component samples were crystallized in a pure perovskite structure without a secondary phase. The introduction of Eu3+ caused the evident variation of the dielectric, ferroelectric and luminescence properties. The remanent polarization and coercive field of the pure NBT-BT are Pr ~29.24 μC/cm2, Ec~39.33 kV/cm, respectively. The maximum of the remanent polarization Pr of ~38.02 μC/cm2 at room temperature and the highest dielectric constant of 6899 with a frequency of 1 kHz were obtained for NBE0.003T-BT. The maximum bipolar strain Smax of ~0.91% and the minimum of coercive field Ec ~18.45 kV/cm were achieved by the NBE0.015T-BT, resulting from the formation of a double hysteresis loop. For all the components, Eu3+ doping stabilized the antiferroelectric phenomenon at high temperature. Furthermore, the polarized NBE0.015T-BT had the strongest fluorescence luminescence intensity as well as a fluorescence lifetime reaching 785.98 μs.  相似文献   

20.
《Ceramics International》2015,41(6):7693-7697
(1−x)BaTiO3xBi(Mg1/2Ti1/2)O3 (BT–BMT, x=0–0.2, abbreviated as BT–BMT100x) ceramics were prepared by using a solid state reaction process. Their crystal structure, microstructure, conduction behavior, dielectric and tunability properties were investigated. It is found that the tetragonal phase and a pseudocubic phase coexist for x≤0.15 and transform to a pseudocubic phase at x=0.20. With the incorporation of BMT, BT–BMT becomes more insulating. The activation energies of the conduction are respectively 1.15(1) and 1.54(1) eV for grain and grain boundary of BT–BMT20. Furthermore, an abnormal nonlinear dielectric tunable behavior is observed. The dielectric permittivity first slightly increases until reaching the threshold electric field, and then suddenly decreases. This abnormal nonlinear dielectric behavior is attributed to the synergetic effects of the clamped oxygen vacancies and excessive aggregation of Bi at the grain boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号