首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The postsynaptic membrane of the neuromuscular junction is highly enriched in rapsyn, which is thought to interact directly with nicotinic acetylcholine receptors (AChR) and anchor them at the synapse. We expressed rapsyn with or without AChRs in Xenopus embryos by mRNA injection. Co-expression of AChR and rapsyn caused the clustering of these two proteins in cultured cells isolated from the injected embryos. When rapsyn was expressed alone, it also became clustered at the substratum-facing membrane in cultured cells and at cell-cell contacts in whole mount embryos. No clusters were observed in cells that expressed AChRs alone. In rapsyn-expressing cells, proteins that are tyrosine phosphorylated as shown by anti-phosphotyrosine antibody labeling were concentrated at rapsyn clusters. Rapsyn itself does not appear to be a substrate for tyrosine kinase. This suggests that other phosphotyrosine-containing proteins are co-clustered with rapsyn in these cells.  相似文献   

2.
Mutations in the adenomatous polyposis coli (APC) tumor suppressor gene are linked to both familial and sporadic human colon cancer. So far, a clear biological function for the APC gene product has not been determined. We assayed the activity of APC in the early Xenopus embryo, which has been established as a good model for the analysis of the signaling activity of the APC-associated protein beta-catenin. When expressed in the future ventral side of a four-cell embryo, full-length APC induced a secondary dorsoanterior axis and the induction of the homeobox gene Siamois. This is similar to the phenotype previously observed for ectopic beta-catenin expression. In fact, axis induction by APC required the availability of cytosolic beta-catenin. These results indicate that APC has signaling activity in the early Xenopus embryo. Signaling activity resides in the central domain of the protein, a part of the molecule that is missing in most of the truncating APC mutations in colon cancer. Signaling by APC in Xenopus embryos is not accompanied by detectable changes in expression levels of beta-catenin, indicating that it has direct positive signaling activity in addition to its role in beta-catenin turnover. From these results we propose a model in which APC acts as part of the Wnt/beta-catenin signaling pathway, either upstream of, or in conjunction with, beta-catenin.  相似文献   

3.
Fenamate compounds have been reported to inhibit ion channels in a number of tissues, including a non-selective cation channel in the mammalian outer hair cell (OHC). We have further investigated the effects of 3'-5-dichlorodiphenylamine-2-carboxylic acid (DCDPC) on OHC currents using the whole-cell configuration of the patch clamp technique. Extracellular application of 10 microM DCDPC rapidly and reversibly activated an inward current at hyperpolarized potentials. The DCDPC-activated current appeared in the shorter OHCs from the basal turns of the cochlea. The reversal potential of the inward current was dependent on the external K+ ion concentration. An outwardly rectifying K+ current, found predominantly in OHCs from apical turns, was reversibly inhibited by DCDPC. These results suggest that DCDPC has a significant effect on OHC physiology at all tonotopic locations along the basilar membrane and so may have implications for cochlear function during fenamate intake.  相似文献   

4.
Protein phosphorylation is important in synaptic transmission and plasticity. We report here that phorbol 12-myristate 13-acetate (TPA), a protein kinase C (PKC) activator, enhances the postsynaptic response at developing neuromuscular junctions by increasing the open time of embryonic acetylcholine (ACh) channels at earlier stages of cultured myocytes. Compared with day-1 cultures, the effects of TPA declined or disappeared on day-3 cultures. Adenosine 5'-triphosphate (ATP) which is co-stored and co-released with ACh at motor nerve terminals and is reported to enhance spontaneous synaptic currents by the activation of PKC, also shows similar developmental changes in the modulation of embryonic ACh channels in Xenopus embryonic myocytes.  相似文献   

5.
The Drosophila slowpoke (slo) gene encodes a subunit of a CAK channel homologous to the vertebrate BK channel. We have examined slo expression throughout development. It is expressed in muscle cells, neurons of the CNS and PNS, mushroom bodies, a limited number of cells in embryonic and larval midgut and in epithelial-derived tracheal cells. The promoter has been cloned and shown to direct expression in the same pattern as the endogenous gene in both neural and epithelial-derived cells. During pupariation and embryogenesis, slo is expressed in muscles many hours prior to the appearance of functional channels.  相似文献   

6.
One of the challenges in understanding ciliary and flagellar motility is determining the mechanisms that locally regulate dynein-driven microtubule sliding. Our recent studies demonstrated that microtubule sliding, in Chlamydomonas flagella, is regulated by phosphorylation. However, the regulatory proteins remain unknown. Here we identify the 138-kD intermediate chain of inner arm dynein I1 as the critical phosphoprotein required for regulation of motility. This conclusion is founded on the results of three different experimental approaches. First, genetic analysis and functional assays revealed that regulation of microtubule sliding, by phosphorylation, requires inner arm dynein I1. Second, in vitro phosphorylation indicated the 138-kD intermediate chain of I1 is the only phosphorylated subunit. Third, in vitro reconstitution demonstrated that phosphorylation and dephosphorylation of the 138-kD intermediate chain inhibits and restores wild-type microtubule sliding, respectively. We conclude that change in phosphorylation of the 138-kD intermediate chain of I1 regulates dynein-driven microtubule sliding. Moreover, based on these and other data, we predict that regulation of I1 activity is involved in modulation of flagellar waveform.  相似文献   

7.
Risk adjustment is intended to minimize selection of patients or enrollees in health plans. Current efforts generally are recognized as inadequate, but improvement is difficult. The greatest short-term gain will come from introducing diagnostic information, though outpatient diagnosis data are unreliable. Initial efforts may use inpatient data, but this creates incentives to hospitalize people. Even exploiting diagnosis information leaves substantial imperfections. Partial capitation, common in behavioral health, reduces incentives to select patients and stent on services, but current policy resists it, perhaps because policymakers misinterpret the lesson of the Prospective Payment System. Theoretically, not paying plans more for providing additional services is optimal only if consumers are well informed.  相似文献   

8.
The principal cells of the chick tangential nucleus are second-order sensory neurons that participate in the three-neuron vestibulo-ocular and vestibulocollic reflexes. In postnatal animals, second-order vestibular neurons fire repetitively on depolarization. Previous studies have shown that, although this is an important feature for normal reflex function, it is only acquired gradually during embryonic development. Whereas at 13 embryonic days (E13) the principal cells accommodate after firing a single spike, at E16 a few principal cells repetitively can fire multiple action potentials on depolarization. Finally, in the hatchling, the vast majority of principal cells is capable of nonaccommodating firing on depolarization. As a first step in understanding the mechanisms underlying developmental change in excitability of these second-order vestibular neurons, we analyzed the outward potassium currents and their role in accommodation, using brainstem slices at E16. The principal cells exhibited transient and sustained potassium currents, with both of these containing calcium-dependent components. Further, both high- and low-threshold sustained potassium currents have been distinguished. The low-threshold dendrotoxin-sensitive sustained potassium current (IDS) is associated with principal cells that accommodate and is not expressed in those that fire repetitively. Finally, blocking of IDS transforms accommodating cells into neurons capable of firing trains of action potentials on depolarization. These findings indicate that suppression of IDS during development is sufficient to transform accommodating principal cells into nonaccommodating firing neurons and suggests that developmental regulation of this current is necessary for the establishment of normal vestibular function.  相似文献   

9.
Alzheimer's disease (AD) is a progressive disorder associated with disruption of neuronal function and neuronal loss. N-acetylaspartate (NAA) is a marker of neuronal content and can be assessed using proton (1H) magnetic resonance spectroscopy (MRS). We utilized 1H-MRS (two-dimensional chemical-shift imaging) to assess amplitudes and areas of NAA, as well as choline moieties (Cho), creatine (Cr) and myo-inositol (mI), in 15 AD patients compared with 14 control subjects. Voxels were classified as predominantly cortical gray matter (CGM), subcortical gray matter (SGM), or white matter (WM). Compared with control subjects, AD patients exhibited decreased NAA/Cho and NAA/Cr amplitudes, whereas an increase was observed in Cho/Cr and in amplitude ratios involving mI. Area ratios were significant in the same direction for NAA/Cho, NAA/Cr, mI/Cr and mI/NAA. No significant effects of tissue type were observed; however, significant group x tissue type interactions were noted for Cho/Cr and mI/Cr amplitudes. Our study confirms that 1H-MRS can identify distinct physicochemical alterations in AD patients, reflecting membrane changes and diminished neuronal function. These alterations can be used as longitudinal markers for the disease.  相似文献   

10.
Kv1.1, a Shaker-like voltage-gated potassium channel, is strongly expressed in a variety of neurons in adult rodents, in which it appears to be involved in regulating neuronal excitability. Here we show that Kv1.1 is also expressed during embryonic development in the mouse, exhibiting two transient peaks of expression around embryonic day 9.5 (E9.5) and E14.5. Using both in situ hybridization and immunocytochemistry, we have identified several cell types and tissues that express Kv1.1 RNA and protein. At E9.5, Kv1.1 RNA and protein are detected transiently in non-neuronal cells in several regions of the early CNS, including rhombomeres 3 and 5 and ventricular zones in the mesencephalon and diencephalon. At E14.5, several cell types in both the CNS and peripheral nervous system express Kv1.1, including neuronal cells (sensory ganglia and outer aspect of cerebral hemispheres) and glial cells (radial glia, satellite cells, and Schwann cell precursors). These data show that Kv1.1 is expressed transiently in a variety of neuronal and non-neuronal cells during restricted periods of embryonic development. Although the functional roles of Kv1.1 in development are not understood, the cell-specific localization and timing of expression suggest this channel may play a role in several developmental processes, including proliferation, migration, or cell-cell adhesion.  相似文献   

11.
Gene targeting is a very powerful tool for studying mammalian development and physiology and for creating models of human diseases. In many instances, however, it is desirable to study different modifications of a target gene, but this is limited by the generally low frequency of homologous recombination in mammalian cells. We have developed a novel gene-targeting strategy in mouse embryonic stem cells that is based on the induction of endogenous gap repair processes at a defined location within the genome by induction of a double-strand break (DSB) in the gene to be mutated. This strategy was used to knock in an NH2-ezrin mutant in the villin gene, which encodes an actin-binding protein expressed in the brush border of the intestine and the kidney. To induce the DSB, an I-SceI yeast meganuclease restriction site was first introduced by gene targeting to the villin gene, followed by transient expression of I-SceI. The repair of the ensuing DSB was achieved with high efficiency (6 x 10[-6]) by a repair shuttle vector sharing only a 2.8-kb region of homology with the villin gene and no negative selection marker. Compared to conventional gene-targeting experiments at the villin locus, this represents a 100-fold stimulation of gene-targeting frequency, notwithstanding a much lower length of homology. This strategy will be very helpful in facilitating the targeted introduction of several types of mutations within a gene of interest.  相似文献   

12.
The tissue distributions and physiological properties of a variety of cloned voltage-gated potassium channel genes have been characterized extensively, yet relatively little is known about the mechanisms controlling expression of these genes. Here, we report studies on the regulation of Kv1.1 expressed endogenously in the C6 glioma cell line. We demonstrate that elevation of intracellular cAMP leads to the accelerated degradation of Kv1.1 RNA. The cAMP-induced decrease in Kv1.1 RNA is followed by a decrease in Kv1. 1 protein and a decrease in the whole cell sustained K+ current amplitude. Dendrotoxin-I, a relatively specific blocker of Kv1.1, blocks 96% of the sustained K+ current in glioma cells, causing a shift in the resting membrane potential from -40 mV to -7 mV. These data suggest that expression of Kv1.1 contributes to setting the resting membrane potential in undifferentiated glioma cells. We therefore suggest that receptor-mediated elevation of cAMP reduces outward K+ current density by acting at the translational level to destabilize Kv1.1 RNA, an additional mechanism for regulating potassium channel gene expression.  相似文献   

13.
The transient 4-aminopyridine-sensitive outward potassium current, Ito, is one of the ionic membrane currents involved in the repolarization of cardiac action potentials. It is present in several species (rat, dog, human) but not in guinea pig ventricle. It induces both a marked lowering of the ventricular action potential plateau level and an early repolarization wave in the ventricular ECG complex of hypothermic rats. In dog ventricle where Ito is much shorter than the action potential plateau it can induce only a transient initial repolarization (notch). The distribution of Ito is heterogeneous across the dog left ventricular free wall, the current being of sizeable amplitude in epicardial and midmyocardial layers but absent in the endocardial layer. As a result, ventricular action potentials exhibit a notch only in epicardial and mid layers. Although the physiological role of Ito remains unclear, we suggest that it can participate in the control of calcium current intensity by influencing the level of the initial part of the plateau. In pathophysiological conditions, Ito may exert unfavourable effects, specially during simulated ischemia when the notch reaches the cellular repolarization threshold, thus inducing premature termination of the action potential, an obvious cause of drastic electrical heterogeneity and resulting severe arrhythmias. The current Ito is reduced in moderate cardiac hypertrophy and dilatation and almost entirely suppressed in severe hypertrophy. Ito is of larger amplitude in human atrial than in ventricular myocytes. The heterogeneous distribution of Ito described in the dog has also been found in human ventricles. Because Ito is markedly prolonged at low temperatures it is suggested that it can be responsible for the early repolarization wave (J wave) observed in the ECG of subjects submitted to hypothermia.  相似文献   

14.
Excitable cells use ion channels to tailor their biophysical properties to the functional demands made upon them. During development, these demands may alter considerably, often associated with a change in the cells' complement of ion channels. Here we present evidence for such a change in inner hair cells, the primary sensory receptors in the mammalian cochlea. In mice, responses to sound can first be recorded from the auditory nerve and observed behaviourally from 10-12 days after birth; these responses mature rapidly over the next 4 days. Before this time, mouse inner hair cells have slow voltage responses and fire spontaneous and evoked action potentials. During development of auditory responsiveness a large, fast potassium conductance is expressed, greatly speeding up the membrane time constant and preventing action potentials. This change in potassium channel expression turns the inner hair cell from a regenerative, spiking pacemaker into a high-frequency signal transducer.  相似文献   

15.
We describe, for the first time, a potassium current in acutely isolated mouse pancreatic acinar cells. This current is activated by depolarization and has many of the characteristics of the fast transient potassium current of neurones where roles in shaping action potential duration and frequency have been proposed. Although acinar cells do not carry action potentials, our experiments indicate that the primary regulator of the current in these cells is the membrane potential. In whole-cell patch-clamped cells we demonstrate an outward current activated by depolarization. This current was transient and inactivated over the duration of the pulse (100-500 ms). The decay of the inactivation was adequately fitted by a single exponential. The time constant of decay, tau, at a membrane potential of +20 mV was 34 +/- 0.6 ms (mean +/- SEM, n = 6) and decreased with more positive pulse potentials. The steady-state inactivation kinetics showed that depolarized holding potentials reduced the amplitude of the current observed with a half-maximal inactivation at a membrane potential of -40.6 +/- 0.33 mV (mean +/- SEM, n = 5). These activation and inactivation characteristics were not affected by low intracellular calcium (10(-10) mol.l-1) or by an increase in calcium (up to 180 nmol.l-1). In addition we found no effect on the current of dibutyryl cyclic adenosine monophosphate (db-cAMP) or the agonist acetylcholine. The current was blocked by 4-aminopyridine (Kd approximately 0.5 mmol.l-1) but not affected by 10 mmol.l-1 tetraethylammonium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
The expression of calcium-activated potassium currents (IK(Ca)), delayed outward rectifier potassium currents (IK(slow)), and transient outward currents (IA) was studied during the development of the nervous system of the leech using the whole-cell patch-clamp recording technique. Dissociated cells were isolated from leech embryos between stage E7 and E16 and maintained in primary culture. K+ currents were recorded at E7, when only few anterior ganglia had formed beneath the primordial mouth. IK(slow) was present in all cells tested, while IK(Ca) was expressed in only 67% of the cells studied. Even as early as E7, different types of IK(Ca) have been found. Neither frequency of occurrence nor the charge density of IK(Ca) showed significant changes between E7 and E16. The density of IK(slow), however, increased by a factor of two between E7 and E8, which resulted in a significant increase in the total K+ current of these cells. This rise in potassium outward current developed in parallel with the appearance of Na+ and Ca2+ inward currents (Schirrmacher and Deitmer: J Exp Biol 155:435-453, 1991) during early development, shaping the electrical excitability in embryonic leech neurones. I(A) could be separated by its voltage-dependence and pharmacological properties. The current was detected at stage E9, when all 32 ganglia are formed in the embryo. The frequency of occurrence of I(A) increased from 16% at E9 to 70% at E15. The channel density, steady state inactivation, and kinetics showed no significant changes during development.  相似文献   

18.
Arachidonic acid, which is thought to be involved in pathogenetic mechanisms of the central nervous system, has been shown previously to modulate neuronal ion channels and the glutamate uptake carrier of retinal glial (Müller) cells. We have used various configurations of the patch-clamp technique to determine the effects of arachidonic acid on the K+ currents of freshly isolated Müller glial cells from rabbit and human. Arachidonic acid reduced the peak amplitude of the transient (A-type) outward K+ currents in a dose-dependent and reversible manner, with a 50% reduction achieved by 4.1 microM arachidonic acid. The inward rectifier-mediated currents remained unchanged after arachidonic acid application. The amplitude of the Ca(2+)-activated K+ outward currents (KCa), which were blocked by 1 mM tetraethylammonium chloride and 40 nM iberiotoxin, respectively, was dose-dependently elevated by bath application of arachidonic acid. The activation curve of the KCa currents shifted towards more negative membrane potentials. Furthermore, arachidonic acid was found to suppress inwardly directed Na+ currents. In cell-attached recordings with 3 mM K+ in the bath and 130 mM K+ in the pipette, the KCa channels of rabbit Müller cells displayed a linear current-voltage relation, with a mean slope conductance of 102 pS. In excised patches, the slope conductance was 220 pS (150 mM K+i/130 mM K+o). The opening probability of the KCa channels increased during membrane depolarization and during elevation of the free Ca2+ concentration at the intracellular face of the membrane patches. Bath application of arachidonic acid caused a reversible increase of the single-channel opening probability, as well as an increase of the number of open channels. Arachidonic acid did not affect the single-channel conductance. Since arachidonic acid also stimulates the KCa channel activity in excised patches, the action of arachidonic acid is assumed to be independent of changes of the intracellular calcium concentration. Our results demonstrate that arachidonic acid exerts specific effects on distinct types of K+ channels in retinal glial, cells. In pathological cases, elevated arachidonic acid levels may contribute to prolonged Müller cell depolarizations, and to the initiation of reactive glial cell proliferation.  相似文献   

19.
1. During cardiac surgery, the heart is arrested and protected by hyperkalaemic cardioplegia. The coronary endothelium may be damaged by ischaemia-reperfusion and cardioplegia. Subsequently, this may affect cardiac function immediately after cardiac surgery and cause mortality and morbidity. 2. We investigated coronary endothelium-smooth muscle interaction after exposure to depolarizing (hyperkalaemic; K+ 20 or 50 mmol/L) and hyperpolarizing (the K+ channel opener aprikalim) cardioplegia and organ preservation solution (University of Wisconsin (UW) solution). Endothelium-dependent relaxation and hyperpolarization of the coronary smooth muscle were studied in the porcine and human large conductance and micro-coronary arteries. Intracellular free calcium concentration in endothelial cells was also measured. 3. The endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation to A23187, bradykinin, and substance P in arteries contracted by either U46619 (10 nmol/L) or K+ (25 mmol/L) was reduced after exposure to either high K+ or UW solution, but was maximally preserved after exposure to aprikalim. The hyperpolarization of the membrane potential in response to the above endothelium-derived relaxing factor stimuli was also reduced by exposure to depolarizing cardioplegia. Studies in microcoronary arteries are in accordance with findings in large arteries. The intracellular free calcium concentration remained unchanged after exposure to hyperkalaemia. 4. We concluded that: (i) during cardiac surgery, the function of coronary circulation may be changed due to exposure to depolarizing cardioplegia or preservation solutions; (ii) the functional change in the coronary circulation is related to the altered interaction between the endothelium and smooth muscle; (iii) depolarizing (hyperkalaemia) cardioplegia or hyperkalaemic organ preservation solutions affect endothelium-smooth muscle interaction through the EDHF pathway; (iv) EDHF relaxes the porcine large and microcoronary arteries through multiple K+ channels; and (v) that hyperpolarizing vasodilators (K+ channel openers) may protect EDHF-mediated endothelial function when used as cardioplegia.  相似文献   

20.
The mammalian Kv1.4 voltage-gated potassium channel mRNA contains an unusually long (1.2 kilobases) 5'-untranslated region (UTR) and includes 18 AUG codons upstream of the authentic site of translation initiation. Computer-predicted secondary structures of this region reveal complex stem-loop structures that would serve as barriers to 5' --> 3' ribosomal scanning. These features suggested that translation initiation in Kv1.4 might occur by the mechanism of internal ribosome entry, a mode of initiation employed by a variety of RNA viruses but only a limited number of vertebrate genes. To test this possibility we introduced the 5'-UTR of mouse Kv1.4 mRNA into the intercistronic region of a bicistronic vector containing two tandem reporter genes, chloramphenicol acetyltransferase and luciferase. The control construct translated only the upstream chloramphenicol cistron in transiently transfected mammalian cells. In contrast, the construct containing the mKv1.4 UTR efficiently translated the luciferase cistron as well, demonstrating the presence of an internal ribosome entry segment. Progressive 5' --> 3' deletions localized the activity to a 3'-proximal 200-nucleotide fragment. Suppression of cap-dependent translation by extracts from poliovirus-infected HeLa cells in an in vitro translation assay eliminated translation of the upstream cistron while allowing translation of the downstream cistron. Our results indicate that the 5'-untranslated region of mKv1.4 contains a functional internal ribosome entry segment that may contribute to unusual and physiologically important modes of translation regulation for this and other potassium channel genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号