首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
本文针对大功率垂直腔面发射激光器(vertical cavity surface emitting laser, VCSEL)阵列热阻大、出光不均匀的问题,研究p-GaAs层欧姆接触电阻值的作用机理,降低欧姆接触串联电阻的方法,以提高VCSEL阵列出射光功率的均匀性。基于3种常用欧姆接触金属Ti/Au、Ni/Au、Ti/Al/Ti/Au,研究各层金属厚度和金属组合对与p型欧姆接触电阻的作用规律;结合等离子体表面处理工艺,改变金属/p-GaAs界面态,研究界面态对欧姆接触电阻的影响规律。实验对比分析得到金属Ti/Au结构电极欧姆接触的比接触电阻率最低,为3.25×10-4 Ω·cm2;基于金半接触势垒模型,通过表面等离子体处理,界面势垒可降低12.6%(0.269 2 eV降至0.235 3 eV),等离子体轰击功率可调控金半界面的势垒和态密度。  相似文献   

2.
利用金属有机化合物化学气相淀积(MOCVD)在SiC衬底上外延生长了N-polar GaN材料,采用传输线模型(TLM)分析了Ti/Al/Ni/Au金属体系在N-polar GaN上的欧姆接触特性.结果表明,Ti/Al/Ni/Au (20/60/10/50 nm)在N-polar GaN上可形成比接触电阻率为2.2×10-3Ω·cm2的非合金欧姆接触,当退火温度升至200℃,比接触电阻率降为1.44×10-3 Ω·cm2,随着退火温度的进一步上升,Ga原子外逸导致欧姆接触退化为肖特基接触.  相似文献   

3.
研究了p型GaN上Pd/NiO/Al/Ni反射电极欧姆接触的比接触电阻率、热稳定性,以及光学反射率。与传统Pd/Al/Ni电极相比,Pd/NiO/Al/Ni电极的欧姆接触在氮气环境中经300℃下热处理10min后,仍保持低比接触电阻率(小于5×10-4Ω·cm2)和高反射率(大于80%@365nm)。研究获得的优化Pd/NiO层厚度为1nm/2nm,此时的Pd/NiO/Al/Ni反射电极既能形成良好的欧姆接触,拥有低比接触电阻率,又能减少对紫外光的吸收,保持高反射率。研究表明适当的NiO层厚度能够有效地防止热处理过程中上层Al金属向p-GaN表面层的渗入,对于制备高质量的Al基反射电极至关重要。  相似文献   

4.
实现SiC器件欧姆接触常规工艺需要800~1200℃的高温退火.研究了n型4H-SiC低温制备Ti欧姆电极的工艺及其基本电学特性.通过氢等离子体处理4H-SiC的表面,沉积Ti后可直接形成欧姆接触,室温下比接触电阻率ρc为2.25×10-3 Ω·m2(ρc由圆形传输线模型CTLM测得),随着合金温度的升高,其欧姆特性逐渐增强,400℃合金后获得最低的比接触电阻率ρc为2.07×10-4 Ω·m2.采用X射线衍射(XRD)确定金属/n-SiC界面反应时形成的相,以分析电学性质与微观结构间的联系.最后讨论了低温欧姆接触的形成机制.  相似文献   

5.
Ni/Au与p-GaN的比接触电阻率测量   总被引:1,自引:0,他引:1  
通过采用环形传输线方法(CILM),电流-电压(I-V)曲线、表面形貌等方法,研究不同的Ni/Au厚度比和空气气氛下合金退火温度对p型氮化镓欧姆接触特性造成的影响。根据Ni/Au与p型氮化镓欧姆接触的形成机制,采用合适的Ni/Au厚度比及退火温度,得到比接触电阻率(ρc)为1.09×10-5Ω.cm2的Ni/Au-p-GaN电极,并分析了Ni在退火过程中对形成良好的欧姆接触中所起到的作用。  相似文献   

6.
杨燕  王文博  郝跃 《半导体学报》2006,27(10):1823-1827
通过改变Ti/Al的结构及退火条件,研究了AlGaN/GaN异质结构上Ti/Al/Ni/Au金属体系所形成的欧姆接触.结果表明,Ti/Al/Ni/Au金属厚度分别为20,120,55和45nm,退火条件为高纯N2气氛中850℃、30s时在AlGaN/GaN异质结构上获得了良好的欧姆接触,其比接触电阻率为3.30×10-6Ω·cm2.SEM分析表明该条件下的欧姆接触具有良好的表面形貌,可以很好地满足高性能AlGaN/GaN高电子迁移率晶体管制造的要求.  相似文献   

7.
通过改变Ti/Al的结构及退火条件,研究了AlGaN/GaN异质结构上Ti/Al/Ni/Au金属体系所形成的欧姆接触.结果表明,Ti/Al/Ni/Au金属厚度分别为20,120,55和45nm,退火条件为高纯N2气氛中850℃、30s时在AlGaN/GaN异质结构上获得了良好的欧姆接触,其比接触电阻率为3.30×10-6Ω·cm2.SEM分析表明该条件下的欧姆接触具有良好的表面形貌,可以很好地满足高性能AlGaN/GaN高电子迁移率晶体管制造的要求.  相似文献   

8.
用传输线模型对n型AlGaN(n-AlGaN)上Au/Pt/Al/Ti多金属层欧姆接触进行了接触电阻率的测量.在850℃退火5min后,测得欧姆接触电阻率达1.6×10-4Ω·cm2.经X射线衍射分析,Au/Pt/Al/Ti/n-AlGaN界面固相反应得出在500℃以上退火过程中,AlGaN层中N原子向外扩散,在AlGaN表面附近形成n型重掺杂层,导致欧姆接触电阻率下降;随退火温度的升高,N原子外扩散加剧,到800℃以上退火在Au/Pt/Al/Ti/n-AlGaN界面形成Ti2N相,导致欧姆接触电阻率进一步下降.  相似文献   

9.
金属/n型AlGaN欧姆接触   总被引:8,自引:5,他引:3  
用传输线模型对n型AlGaN(n-AlGaN)上Au/Pt/Al/Ti多金属层欧姆接触进行了接触电阻率的测量.在850℃退火5min后,测得欧姆接触电阻率达1.6×10-4Ω·cm2.经X射线衍射分析,Au/Pt/Al/Ti/n-AlGaN界面固相反应得出在500℃以上退火过程中,AlGaN层中N原子向外扩散,在AlGaN表面附近形成n型重掺杂层,导致欧姆接触电阻率下降;随退火温度的升高,N原子外扩散加剧,到800℃以上退火在Au/Pt/Al/Ti/n-AlGaN界面形成Ti2N相,导致欧姆接触电阻率进一步下降.  相似文献   

10.
采用多种传输线模型方法,测量了p型GaN上的欧姆接触的比接触电阻率.通过比较和分析不同测量方法所得的结果之间的差异,得出了一个准确、可靠测量p型GaN上的欧姆接触的比接触电阻率的方法--圆点传输线模型方法.利用该方法优化了p型GaN上欧姆接触的退火温度,在氧气气氛中650℃退火后获得了最优的欧姆接触,其比接触电阻率为5.12×10-4Ω·cm2.  相似文献   

11.
实验研究了淀积在GaN上的Ti/Al/Ti/Au电极的电学和热学特性,绘制了不同退火温度下的I-V曲线,得到了最低的欧姆接触电阻率(ρs=1.2×10-4 Ω·cm2),并通过X射线衍射谱分析了GaN与Ti/Al/Ti/Au电极接触表面在退火过程中的固相反应.实验结果表明,在Ti/Al表面增加Ti/Au保护层能够保证Al层在高温时不发生球化和氧化,电极更稳定可靠能够进一步提高欧姆接触特性.  相似文献   

12.
采用Ti/Al/Ni/Au多层金属体系在Al0.27Ga0.73N/GaN异质结构上制备了欧姆接触.分别采用线性传输线方法(LTLM)和圆形传输线方法(CTLM)对其电阻率进行了测试.当Ti(10nm)/Al(100nm)/Ni(40nm)/Au(100nm)金属体系在650℃高纯N2气氛中退火30s时,测量得到的最小比接触电阻率为1.46×10-5Ω·cm2.并制备了Al0.27Ga0.73N/GaN光导型紫外探测器,通过测试发现探测器的暗电流.电压曲线呈线性分布.实验结果表明在Al0.27 Ga0.73N/GaN异质结构上获得了好的欧姆接触,能够满足制备高性能AlGaN/GaN紫外探测器的要求.  相似文献   

13.
研究了Ni/Pt和Ti/Pt金属在n型4H-SiC上的欧姆接触。在1 020℃退火后,Ni/Pt与n型4H-SiC欧姆接触的比接触电阻为2.2×10-6Ω·cm2。Ti/Pt与n型4H-SiC欧姆接触的比接触电阻为5.4×10-6Ω·cm2,退火温度为1 050℃。虽然Ni的功函数比Ti的功函数高,但是Ni比Ti更容易与n型4H-SiC形成欧姆接触。使用能谱分析仪(EDX)分析了Ni/Pt和Ti/Pt金属与4HSiC接触面的元素,观察到C原子相对于Pt原子的原子数分数随退火温度的变化而不同。实验验证了在n型4H-SiC中退火导致的碳空位起施主作用是有利于欧姆接触形成的主要原因。  相似文献   

14.
Ni/Ag/Ti/Au金属系反射镜电极广泛用于GaN基垂直结构发光二极管(LED)的传统制造工艺.这种电极需要进行高温长时间整体退火才能获得高质量的欧姆接触,但对电极的反射率和器件性能影响较大.介绍了一种新工艺方法,该方法将电极分解为接触层和反射层,降低反射层经历的退火温度和时间,获得了拥有良好的欧姆接触特性和高反射率的反射镜电极,解决了传统电极光学性能和电学性能相互制约的问题.首先生长极薄的Ni/Ag作为接触层,对接触层进行高温长时间退火后再生长厚层Ag作为反射层,之后再进行一次低温退火.使得对反射起主要作用的反射层免于高温长时间退火,相较于传统Ni/Ag/Ti/Au电极,该方法在获得更优良的欧姆接触的同时,提升了电极的反射率.在氧气氛围下进行500℃接触层退火3 min,400℃整体退火1 min后,电极的比接触电阻率为1.7×l0-3Ω·cm2,同时在450 nm处反射率为93%.  相似文献   

15.
降低芯片背面金属-半导体欧姆接触电阻是有效提高器件性能的方式之一。采用650 V SiC肖特基势垒二极管(SBD)工艺,使用波长355 nm不同能量的脉冲激光进行退火实验,利用X射线衍射(XRD)和探针台对晶圆背面镍硅合金进行测量分析,得出最佳能量为3.6 J/cm2。退火后采用扫描电子显微镜(SEM)观察晶圆背面碳团簇,针对背面的碳团簇问题,在Ar;气氛下对晶圆进行了表面处理,使用SEM和探针台分别对两组样品的表面形貌和电压-电流特性进行了对比分析。实验结果表明,通过表面处理可以有效降低表面的碳含量,并且使器件正向压降均值降低了6%,利用圆形传输线模型(CTLM)测得芯片的比导通电阻为9.7×10-6Ω·cm2。器件性能和均匀性都得到提高。  相似文献   

16.
利用电子回旋共振(ECR)氢等离子体处理n型4H-SiC(0.5~1.5×1019cm-3)表面,采用溅射法制备碳化钛(TiC)电极,并在低温(<800℃)条件下退火。直线传输线模型(TLM)测试结果表明,TiC电极无需退火即可与SiC形成欧姆接触,采用ECR氢等离子体处理能明显降低比接触电阻,并在600℃退火时获得了最小的比接触电阻2.45×10-6Ω.cm2;当退火温度超过600℃时,欧姆接触性能开始退化,但是比接触电阻仍然低于未经氢等离子体处理的样品,说明ECR氢等离子体处理对防止高温欧姆接触性能劣化仍有明显的效果。利用X射线衍射(XRD)分析了不同退火温度下TiC/SiC界面的物相组成,揭示了电学特性与微观结构的关系。  相似文献   

17.
磷注入4H-SiC(0001)的欧姆接触特性   总被引:1,自引:1,他引:0  
刘春娟  刘肃  冯晶晶  吴蓉 《半导体学报》2012,33(3):036002-4
摘要: 研究了不同剂量的磷注入4H–SiC层经高温退火处理后的电学特性。通过在1650 ?C 退火30分钟激活了注入的磷离子。TLM及Hall法测试的结果表明,尽管随着磷注入浓度的增加而产生的位错环使得Ni/SiC界面处势垒增高,仍形成了良好的镍欧姆接触,表面接触电阻率为1.30?10-6Ω.cm2。磷注入层电阻率随着磷掺杂浓度的升高而减小。通过对不同注入剂量下电子浓度随温度的变化曲线进行测试,结果表明在200–500K的温度范围内,磷注入层的电子浓度与温度基本无关。  相似文献   

18.
采用Ti/Al/Ni/Au多层金属体系在Al0.27Ga0.73N/GaN异质结构上制备了欧姆接触. 分别采用线性传输线方法(LTLM)和圆形传输线方法(CTLM)对其电阻率进行了测试. 当Ti(10nm)/Al(100nm)/Ni(40nm)/Au(100nm)金属体系在650℃高纯N2气氛中退火30s时,测量得到的最小比接触电阻率为1.46E-5Ω·cm2. 并制备了Al0.27Ga0.73N/GaN光导型紫外探测器,通过测试发现探测器的暗电流-电压曲线呈线性分布. 实验结果表明在Al0.27Ga0.73N/GaN异质结构上获得了好的欧姆接触,能够满足制备高性能AlGaN/GaN紫外探测器的要求.  相似文献   

19.
p型GaN欧姆接触的比接触电阻率测量   总被引:3,自引:1,他引:3  
薛松  韩彦军  吴震  罗毅 《半导体学报》2005,26(5):965-969
采用多种传输线模型方法,测量了p型GaN上的欧姆接触的比接触电阻率.通过比较和分析不同测量方法所得的结果之间的差异,得出了一个准确、可靠测量p型GaN上的欧姆接触的比接触电阻率的方法——圆点传输线模型方法.利用该方法优化了p型GaN上欧姆接触的退火温度,在氧气气氛中650℃退火后获得了最优的欧姆接触,其比接触电阻率为5.12e-4Ω·cm2.  相似文献   

20.
胡乐枫  张燕 《半导体光电》2022,43(3):510-516
针对具备100~200 nm薄吸收区的肖特基型探测器,研究了不同金属接触对其暗电流和光谱响应特性的影响。以GaN基材料为主体,在薄层Al0.42Ga0.58N表面分别制备Au和Ni/Au形成肖特基接触,在Al0.55Ga0.45N表面以Ti/Al/Ti/Au制备欧姆接触,从而制备薄吸收区的AlGaN肖特基日盲探测器。结果表明对AlGaN材料,Au肖特基型探测器的光响应良好,达到0.10 A/W,外量子效率峰值为47%,但暗电流稍大,为3.91×10-10 A/cm2。而Ni/Au肖特基型探测器的暗电流稳定,普遍在4.17×10-11 A/cm2,而响应率一般,为0.07 A/W,外量子效率为33%。测试结果与仿真模型基本一致,对正照式,受势垒高度和界面损耗层等因素影响,相较Ni/Au肖特基型探测器,Au肖特基型探测器的响应范围更大、响应率更高;对背照式,吸收层的厚度对响应范围有很大影响,薄吸收区有效展宽了响应区域...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号