首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many volatile organic compounds (VOCs) are classified as known or possible carcinogens, irritants, and toxicants, and VOC exposure has been associated with the onset and exacerbation of asthma. This study characterizes VOC levels in 126 homes of children with asthma in Detroit, Michigan, USA. The total target VOC concentration ranged from 14 to 2274 μg/m3 (mean = 150 μg/m3; median = 91 μg/m3); 56 VOCs were quantified; and d‐limonene, toluene, p, m‐xylene, and ethyl acetate had the highest concentrations. Based on the potential for adverse health effects, priority VOCs included naphthalene, benzene, 1,4‐dichlorobenzene, isopropylbenzene, ethylbenzene, styrene, chloroform, 1,2‐dichloroethane, tetrachloroethene, and trichloroethylene. Concentrations varied mostly due to between‐residence and seasonal variation. Identified emission sources included cigarette smoking, solvent‐related emissions, renovations, household products, and pesticides. The effect of nearby traffic on indoor VOC levels was not distinguished. While concentrations in the Detroit homes were lower than levels found in other North American studies, many homes had elevated VOC levels, including compounds that are known health hazards. Thus, the identification and control of VOC sources are important and prudent, especially for vulnerable individuals. Actions and policies to reduce VOC exposures, for example, sales restrictions, improved product labeling, and consumer education, are recommended.  相似文献   

2.
Little information is available about air quality in early childhood education (ECE) facilities. We collected single‐day air samples in 2010–2011 from 40 ECE facilities serving children ≤6 years old in California and applied new methods to evaluate cancer risk in young children. Formaldehyde and acetaldehyde were detected in 100% of samples. The median (max) indoor formaldehyde and acetaldehyde levels (μg/m3) were 17.8 (48.8) and 7.5 (23.3), respectively, and were comparable to other California schools and homes. Formaldehyde and acetaldehyde concentrations were inversely associated with air exchange rates (Pearson r = ?0.54 and ?0.63, respectively; P < 0.001). The buildings and furnishings were generally >5 years old, suggesting other indoor sources. Formaldehyde levels exceeded California 8‐h and chronic Reference Exposure Levels (both 9 μg/m3) for non‐cancer effects in 87.5% of facilities. Acetaldehyde levels exceeded the U.S. EPA Reference Concentration in 30% of facilities. If reflective of long‐term averages, estimated exposures would exceed age‐adjusted ‘safe harbor levels’ based on California's Proposition 65 guidelines (10?5 lifetime cancer risk). Additional research is needed to identify sources of formaldehyde and acetaldehyde and strategies to reduce indoor air levels. The impact of recent California and proposed U.S. EPA regulations to reduce formaldehyde levels in future construction should be assessed.  相似文献   

3.
Correctional centers (prisons) are one of the few non‐residential indoor environments where smoking is still permitted. However, few studies have investigated indoor air quality (IAQ) in these locations. We quantified the level of inmate and staff exposure to secondhand smoke, including particle number (PN) count, and we assessed the impact of the smoking ban on IAQ. We performed measurements of indoor and outdoor PM2.5 and PN concentrations, personal PN exposure levels, volatile organic compounds (VOCs), and nicotine both before and after a complete indoor smoking ban in an Australian maximum security prison. Results show that the indoor 24‐h average PM2.5 concentrations ranged from 6 (±1) μg/m3 to 17 (±3) μg/m3 pre‐ban. The post‐ban levels ranged from 7 (±2) μg/m3 to 71 (±43) μg/m3. While PM2.5 concentrations decreased in one unit post‐ban, they increased in the other two units. Similar post‐ban increases were also observed in levels of PN and VOCs. We describe an unexpected increase of indoor pollutants following a total indoor smoking ban in a prison that was reflected across multiple pollutants that are markers of smoking. We hypothesise that clandestine post‐ban smoking among inmates may have been the predominant cause.  相似文献   

4.
Volatile organic compounds (VOCs) as a non-negligible aircraft cabin air quality (CAQ) factor influence the health and comfort of passengers and crew members. On-board measurements of carbonyls (short-chain (C1-C6)) and other volatile organic compounds (VOCs, long-chain (C6-C16)) with a total of 350 samples were conducted in 56 commercial airliner cabins covering 8 aircraft models in this study. The mean concentration for each individual carbonyl compound was between 0.3 and 8.3 μg/m3 (except for acrolein & acetone, average = 20.7 μg/m3) similar to the mean concentrations of other highly detected VOCs (long-chain (C6-C16), 97% of which ranged in 0–10 μg/m3) in aircraft cabins. Formaldehyde concentrations in flights were significantly lower than in residential buildings, where construction materials are known formaldehyde sources. Acetone is a VOC emitted by humans, and its concentration in flights was similar to that in other high-occupant density transportation vehicles. The variation of VOC concentrations in different flight phases of long-haul flights was the same as that of CO2 concentration except for the meal phase, which indicates the importance of cabin ventilation in diluting the gaseous contaminants, while the sustained and slow growth of the VOC concentrations during the cruising phase in short-haul flights indicated that the ventilation could not adequately dilute the emission of VOCs. For the different categories of VOCs, the mean concentration during the cruising phase of benzene series, aldehydes, alkanes, other VOCs (detection rate > 50%), and carbonyls in long-haul flights was 44.2 µg/m3, 17.9 µg/m3, 18.6 µg/m3, 31.5 µg/m3, and 20.4 µg/m3 lower than those in short-haul flights, respectively. Carbonyls and d-limonene showed a significant correlation with meal service (< 0.05). Unlike the newly decorated rooms or new vehicles, the inner materials were not the major emission sources in aircraft cabins. Practical Implications.
  • The on-board measurements of 56 flights enrich the VOC database of cabin environment, especially for carbonyls. The literature review of carbonyls in the past 20 years contributes to the understanding the current status of cabin air quality (CAQ).
  • The analysis of VOC concentration variation for different flight phases, flight duration, and aircraft age lays a foundation for exploring effective control methods, including ventilation and purification for cabin VOC pollution.
  • The enriched VOC data is helpful to explore the key VOCs of aircraft cabin environment and to evaluate the acute/chronic health exposure risk of pollutants for passengers and crew members.
  相似文献   

5.
Exposure to elevated levels of certain volatile organic compounds (VOCs) in households has been linked to deleterious health effects. This study presents the first large-scale investigation of VOC levels in 169 energy-efficient dwellings in Switzerland. Through a combination of physical measurements and questionnaire surveys, we investigated the influence of diverse building characteristics on indoor VOCs. Among 74 detected compounds, carbonyls, alkanes, and alkenes were the most abundant. Median concentration levels of formaldehyde (14 μg/m3), TVOC (212 μg/m3), benzene (<0.1 μg/m3), and toluene (22 μg/m3) were below the upper exposure limits. Nonetheless, 90% and 50% of dwellings exceeded the chronic exposure limits for formaldehyde (9 μg/m3) and TVOC (200 μg/m3), respectively. There was a strong positive correlation among VOCs that likely originated from common sources. Dwellings built between 1950s and 1990s, and especially, those with attached garages had higher TVOC concentrations. Interior thermal retrofit of dwellings and absence of mechanical ventilation system were associated with elevated levels of formaldehyde, aromatics, and alkanes. Overall, energy-renovated homes had higher levels of certain VOCs compared with newly built homes. The results suggest that energy efficiency measures in dwellings should be accompanied by actions to mitigate VOC exposures as to avoid adverse health outcomes.  相似文献   

6.
Monitoring of human reactions to the emission of formaldehyde and volatile organic compounds (VOC) from four commonly used building materials was carried out. The building materials were: a painted gypsum board, a rubber floor, a nylon carpet, and a particle board with an acid-curing paint. The exposures were performed in climate chambers. The air quality was quantified on the decipol scale by a trained panel, measurements of formaldehyde and VOC being performed simultaneously. The irritating potency of the materials was measured by a mouse bioassay. The VOC measurements showed several malodorants and irritants. Some abundant VOC identified in the head-space analyses were absent in the climate chamber air. The rubber floor and the nylon carpet exhibited a marked increase in decipols compatible with a number of odorous VOC identified in the air. A high formaldehyde concentration (minimum 743μg/m3) was measured for the particle board coated with an acid-curing paint. This was not reflected by a corresponding relatively high decipol value but a long-lasting irritating potency was observed in the mouse bioassay. TVOC sampled on Tenax and expressed in mass per volume as well as in molar concentration, and decipol evaluation both have limitations and should be used with caution as indicators of (perceived) indoor air quality. Eye irritation expressed by means of the eye index reflecting the tear film quality index (comprised of break-up time, foam formation, thickness of the precorneal lipid layer of the tear film, and epithelial damage) was found to be insensitive to formaldehyde and a VOC mixture but sensitive to TVOC concentrations of 1–2 mg/m3. Lipophilic VOC may be the cause of reduced tear film quality by destabilization of the lipid multilayer of the tear film.  相似文献   

7.
Y. Yang  M. S. Waring 《Indoor air》2016,26(6):939-952
Secondary organic aerosol (SOA) owing to reactive organic gas (ROG) ozonolysis can be an important indoor particle source. However, SOA formation owing to ozonolysis of α‐terpineol, which is emitted by consumer product usage and reacts strongly with ozone, has not been systematically quantified. Therefore, we conducted 21 experiments to investigate the SOA formation initiated by α‐terpineol ozonolysis for high (0.84 h?1), moderate (0.61 h?1), and low (0.36 h?1) air exchange rates (AER), which is the frequency with which indoor is replaced by outdoor air. α‐Terpineol concentrations of 6.39 to 226 ppb were combined with high ozone (~25 ppm) to ensure rapid and complete ozonolysis. No reactants were replenished, so SOA peaked quickly and then decreased due to AER and surface losses, and peak SOA ranged from 2.03 to 281 μg/m3 at unit density. SOA mass formation was parameterized with the aerosol mass fraction (AMF), a.k.a. the SOA yield, and AMFs ranged from 0.056 to 0.24. The AMFs strongly and positively correlated with reacted α‐terpineol, whereas they weakly and negatively correlated with higher AERs. One‐product, two‐product, and volatility basis set (VBS) models were fit to the AMF data. Predictive modeling demonstrated that α‐terpineol ozonolysis could meaningfully form SOA in indoor air.  相似文献   

8.
Particle mass and number concentrations were measured in a mechanically ventilated classroom as part of a study of ventilation strategies for energy conservation. The ventilation system was operated either continuously, intermittently, or shut down during nights while it was on during workdays. It appears that the nighttime ventilation scheme is not important for indoor particle concentrations the following day if fans are operated to give five air exchanges in advance of the workday. The highest concentrations of PM10 were found during and after workdays and were due to human activity in the classroom. The average workday PM10 concentration was 14 μg/m3, well below the WHO guideline values. The number concentration of particles with diameter <0.750 μm was typically between 0.5 × 103 and 3.5 × 103 particle/cm3. These concentrations were largely independent of the occupants. Transient formation of small particles was observed when ventilation was shut down. Then remaining ozone reacted with terpenes emitted by indoor sources and gave up to 8 × 103 particle/cm3 before formation stopped due to lack of ozone. The intermittent ventilation regime was found least favorable for the indoor air quality in the classroom.  相似文献   

9.
In indoor environments with high levels of air pollution, it is desirable to remove major sources of emissions to improve air quality. In order to identify the emission sources that contribute most to the concentrations of indoor air pollutants, we used passive flux samplers (PFSs) to measure emission rates of carbonyl compounds and volatile organic compounds (VOCs) from many of the building materials and furnishings present in a room in a reinforced concrete building in Tokyo, Japan. The emission flux of formaldehyde from a desk was high (125 μg/m2/h), whereas fluxes from a door and flooring were low (21.5 and 16.5 μg/m2/h, respectively). The emission fluxes of toluene from the ceiling and the carpet were high (80.0 and 72.3 μg/m2/h, respectively), whereas that from the flooring was low (9.09 μg/m2/h). The indoor and outdoor concentrations of formaldehyde were 61.5 and 8.64 μg/m3, respectively, and those of toluene were 43.2 and 17.5 μg/m3, respectively. The air exchange rate of the room as measured by the perfluorocarbon tracer (PFT) method was 1.84/h. Taking into consideration the area of the emission sources, the carpet, ceiling, and walls were identified as the principal emission sources, contributing 24%, 20%, and 22% of the formaldehyde, respectively, and 22%, 27%, and 14% of the toluene, respectively, assuming that the emission rate from every major emission sources could be measured. In contrast, the door, the flooring, and the desk contributed little to the indoor levels of formaldehyde (1.0%, 0.54%, and 4.1%, respectively) and toluene (2.2%, 0.31%, and 0.85%, respectively).  相似文献   

10.
Abstract This study deals with the modeling of air pollution in apartments from laboratory measurements of source strengths, using formaldehyde and Total Volatile Organic Compounds (TVOCs) as model pollutants. The sources in two test apartments were grouped into two: building-related sources and occupant-related sources. The measured source strengths and ventilation rates were used for the prediction of concentrations expected in the apartments. These predictions were compared to measurements in the apartment over 12 months. The conclusions were that the model predictions based on emission rates measured in the laboratory can be used to predict the long-term concentration of the two model pollutants in the apartments. Considering the measured differences in ventilation between the apartments, an occupant emission rate of between 0.2 and 0.3 mg/h/kg body weight could be estimated. Based on previous suggested limits of acceptable exposures of humans to VOCs, an acceptable average emission rate of VOCs from building materials in general was estimated to be about 30 (μ/m2/h. The modeling showed that during the first 200 days, building materials dominated the emissions. After this, sources relating to the occupants dominated. On average about half of the VOC pollution originated from the building materials.  相似文献   

11.
The formaldehyde emission rates from building and furniture materials in 24 student rooms were measured using a passive sampling method parallel to a monitoring of indoor and outdoor concentrations. This passive tool represents an interesting alternative to standard dynamic methods as it is easier to implement for field investigation. Although the indoor formaldehyde concentrations (21.3 μg m−3 on average) are at a medium level, consistent with earlier published results, the recorded emission rates are globally low (from 1 to 15 μg m−2 h−1) except for the high emission of beds identified in one building (87.3 μg m−2 h−1 on average). Data analysis revealed that the emissions released from furniture and building materials are the main contributions to the indoor formaldehyde concentrations with 45 and 43% on average. The high formaldehyde levels in rooms are mainly explained by the rise of formaldehyde emissions from indoor materials with temperature although the buildings and the furniture were older than 7 years. Basing on the data of emission rates, outdoor concentrations and air exchange rates, a one compartment mass balance model was used to calculate indoor concentrations. A good agreement was found between the predictions of the model and the measured indoor concentrations. This methodology could lead to the definition of arrangements for the efficient reduction of indoor formaldehyde levels.  相似文献   

12.
Inadequate ventilation of classrooms may lead to increased concentrations of pollutants generated indoors in schools. The FRESH study, on the effects of increased classroom ventilation on indoor air quality, was performed in 18 naturally ventilated classrooms of 17 primary schools in the Netherlands during the heating seasons of 2010–2012. In 12 classrooms, ventilation was increased to targeted CO2 concentrations of 800 or 1200 ppm, using a temporary CO2 controlled mechanical ventilation system. Six classrooms were included as controls. In each classroom, data on endotoxin, β(1,3)‐glucans, and particles with diameters of <10 μm (PM10) and <2.5 μm (PM2.5) and nitrogen dioxide (NO2) were collected during three consecutive weeks. Associations between the intervention and these measured indoor air pollution levels were assessed using mixed models, with random classroom effects. The intervention lowered endotoxin and β(1,3)‐glucan levels and PM10 concentrations significantly. PM10 for instance was reduced by 25 μg/m³ (95% confidence interval 13–38 μg/m³) from 54 μg/m³ at maximum ventilation rate. No significant differences were found between the two ventilation settings. Concentrations of PM2.5 and NO2 were not affected by the intervention. Our results provide evidence that increasing classroom ventilation is effective in decreasing the concentrations of some indoor‐generated pollutants.  相似文献   

13.
Basements can influence indoor air quality by affecting air exchange rates (AERs) and by the presence of emission sources of volatile organic compounds (VOCs) and other pollutants. We characterized VOC levels, AERs, and interzonal flows between basements and occupied spaces in 74 residences in Detroit, Michigan. Flows were measured using a steady‐state multitracer system, and 7‐day VOC measurements were collected using passive samplers in both living areas and basements. A walk‐through survey/inspection was conducted in each residence. AERs in residences and basements averaged 0.51 and 1.52/h, respectively, and had strong and opposite seasonal trends, for example, AERs were highest in residences during the summer, and highest in basements during the winter. Airflows from basements to occupied spaces also varied seasonally. VOC concentration distributions were right‐skewed, for example, 90th percentile benzene, toluene, naphthalene, and limonene concentrations were 4.0, 19.1, 20.3, and 51.0 μg/m3, respectively; maximum concentrations were 54, 888, 1117, and 134 μg/m3. Identified VOC sources in basements included solvents, household cleaners, air fresheners, smoking, and gasoline‐powered equipment. The number and type of potential VOC sources found in basements are significant and problematic, and may warrant advisories regarding the storage and use of potentially strong VOCs sources in basements.  相似文献   

14.
Volatile organic compounds (VOC) in office buildings originate from multiple sources, such as outdoor air, building materials., occupants, office supplies, and office equipment. Many of the VOC found in office buildings are also present in environmental tobacco smoke (ETS), e.g., benzene, toluene, formaldehyde. Measurements made to date in office buildings have been interpreted by some to imply that the contributions of ETS to VOC exposures in office buildings are small. We have made a first order estimate of the contributions of ETS to VOC concentrations based on the VOC content of ETS and a time-dependent mass-balance model. Four different ventilation-infiltration scenarios were modelled for a typical office building. The results indicate that ETS can contribute significantly to total indoor levels of VOC in office buildings, even under moderate ventilation conditions. Ranges of concentrations for three of the four modelled scenarios substantially overlapped measured ranges of the compounds in office buildings. Average daytime concentrations of benzene from ETS, for example, for three of the four modelled scenarios, ranged from 2.7 to 6.2 μg m?3, compared to reported measurements of 1.4 to 8.1 μg m?3 for four office buildings. Under a “worst reasonable” case scenario, the average modelled ETS-contributed concentration of benzene was 33.9 μg m?3 for a 40-hour work week.  相似文献   

15.
Adding biocides to dispersion products is a well‐known practice to control microbial deterioration. Isothiazolones are among the most commonly used preservatives, in particular a mixture of 2‐methyl‐2H‐isothiazol‐3‐one (MIT) and 5‐chloro‐2‐methyl‐2H‐isothiazol‐3‐one (CIT). In recent years, for health reasons, due to its strong sensitizing effect, CIT has been replaced by 1,2‐benzisothiazol‐3‐one (BIT). Furthermore, numerous products are now available for interiors containing the fungicidal active substance 2‐octyl‐2H‐isothiazol‐3‐one (OIT). So far nearly nothing is known of the emission behavior of BIT and OIT. An analytical method was developed for these two isothiazolones and interior products containing BIT respectively OIT have been investigated in an emission chamber and in test rooms. The chamber tests revealed maximum concentrations of 6.7 μg OIT/m3, 1.9 μg BIT/m3, and 187 μg MIT/m3. Concentrations obtained in the test rooms were at levels up to 1.4 μg OIT/m3 and 29 μg MIT/m3. A noticeable finding was the very slight subsidence of OIT and BIT levels over several weeks. While MIT outgassed quickly, OIT in particular showed low concentrations, but prolonged evaporation.  相似文献   

16.
Emissions from indoor biomass burning are a major public health concern in developing areas of the world. Less is known about indoor air quality, particularly airborne endotoxin, in homes burning biomass fuel in residential wood stoves in higher income countries. A filter‐based sampler was used to evaluate wintertime indoor coarse particulate matter (PM10‐2.5) and airborne endotoxin (EU/m3, EU/mg) concentrations in 50 homes using wood stoves as their primary source of heat in western Montana. We investigated number of residents, number of pets, dampness (humidity), and frequency of wood stove usage as potential predictors of indoor airborne endotoxin concentrations. Two 48‐h sampling events per home revealed a mean winter PM10‐2.5 concentration (± s.d.) of 12.9 (± 8.6) μg/m3, while PM2.5 concentrations averaged 32.3 (± 32.6) μg/m3. Endotoxin concentrations measured from PM10‐2.5 filter samples were 9.2 (± 12.4) EU/m3 and 1010 (± 1524) EU/mg. PM10‐2.5 and PM2.5 were significantly correlated in wood stove homes (r = 0.36, P < 0.05). The presence of pets in the homes was associated with PM10‐2.5 but not with endotoxin concentrations. Importantly, none of the other measured home characteristics was a strong predictor of airborne endotoxin, including frequency of residential wood stove usage.  相似文献   

17.
Thermal conditions and indoor concentrations of aldehydes, volatile organic compounds (VOCs), and NO2 were investigated in 19 occupied temporary houses in 15 temporary housing estates constructed in Minamisoma City, Fukushima, Japan. The data were collected in winter, spring, and summer in January to July 2012. Thermal conditions in temporary log houses in the summer were more comfortable than those in pre‐fabricated houses. In the winter, the indoor temperature was uncomfortably low in all of the houses, particularly the temporary log houses. Indoor air concentrations for most aldehydes and VOCs were much lower than the indoor guidelines, except for those of p‐dichlorobenzene, acetaldehyde, and total VOCs. The indoor p‐dichlorobenzene concentrations exceeded the guideline (240 μg/m3) in 18% of the temporary houses, and the 10?3 cancer risk level (91 μg/m3) was exceeded in winter in 21% due to use of moth repellents by the occupants. Indoor acetaldehyde concentrations exceeded the guideline (48 μg/m3) in about half of the temporary houses, likely originating from the wooden building materials. Indoor NO2 concentrations in the temporary houses were significantly higher in houses where combustion heating appliances were used (0.17 ± 0.11 ppm) than in those where they were not used (0.0094 ± 0.0065 ppm).  相似文献   

18.
Cooking is recognized as an important source of particulate pollution in indoor and outdoor environments. We conducted more than 100 individual experiments to characterize the particulate and non‐methane organic gas emissions from various cooking processes, their reaction rates, and their secondary organic aerosol yields. We used this emission data to develop a box model, for simulating the cooking emission concentrations in a typical European home and the indoor gas‐phase reactions leading to secondary organic aerosol production. Our results suggest that about half of the indoor primary organic aerosol emission rates can be explained by cooking. Emission rates of larger and unsaturated aldehydes likely are dominated by cooking while the emission rates of terpenes are negligible. We found that cooking dominates the particulate and gas‐phase air pollution in non‐smoking European households exceeding 1000 μg m?3. While frying processes are the main driver of aldehyde emissions, terpenes are mostly emitted due to the use of condiments. The secondary aerosol production is negligible with around 2 μg m?3. Our results further show that ambient cooking organic aerosol concentrations can only be explained by super‐polluters like restaurants. The model offers a comprehensive framework for identifying the main parameters controlling indoor gas‐ and particle‐phase concentrations.  相似文献   

19.
We report results of analysis of a month‐long measurement of indoor air and environment quality parameters in one gym during sporting activities such as football, basketball, volleyball, badminton, boxing, and fitness. We have determined an average single person's contribution to the increase of temperature, humidity, and dust concentration in the gym air volume of 12500 m3: during 90‐min exercise performed at an average heart rate of 143 ± 10 bpm, a single person evaporated 0.94 kg of water into the air by sweating, contributed 0.03 K to the air temperature rise and added 1.5 μg/m3 and 5 ng/m3 to the indoor concentration of inhalable particles (PM10) and Ca concentration, respectively. As the breathing at the observed exercise intensity was about three times faster with respect to the resting condition and as the exercise‐induced PM10 concentration was about two times larger than outdoors, a sportsman in the gym would receive about a sixfold higher dose of PM10 inside than he/she would have received at rest outside.  相似文献   

20.
R. Liu  Y. Jiang  Q. Li  S. K. Hammond 《Indoor air》2014,24(4):339-349
Field observation of patron smoking behaviors and multiple sampling approaches were conducted in 79 restaurants and bars in Beijing, 2010, 2 years after implementing the governmental smoking regulations. Smoking was observed in 30 visits to 22 of the 37 nominal non‐smoking venues during peak patronage times and six visits to four of the 14 nominal non‐smoking sections. The median area secondhand smoke (SHS) concentrations during peak patronage time were 27, 15, 43, and 40 μg/m3 in nominal non‐smoking venues, non‐smoking sections, smoking sections, and smoking venues, respectively, as indicated by the difference between indoor and outdoor PM2.5 levels; and 1.4, 0.6, 1.7, and 2.7 μg/m3, respectively, as indicated by airborne nicotine. In the 27 venues with sampling of different approaches and over different time periods, the median nicotine concentration was 1.8 μg/m3 by one‐hour peak patronage‐time sampling, 1.1 μg/m3 by 1‐day active area sampling, 2.5 μg/m3 by 1‐day personal sampling, and 2.3 μg/m3 by week‐long passive sampling. No significant differences in nicotine levels were observed among venues/sections with different nominal smoking policies by all sampling approaches except during peak patronage time. This study showed that the 2008 Beijing governmental smoking restriction has been poorly implemented, and SHS exposures in Beijing restaurants and bars remain high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号