共查询到19条相似文献,搜索用时 49 毫秒
1.
2.
设计了一个将电离层水平电场与风场耦合的模拟方案,研究了电流函数和风场在耦合前后的变化与差异. 研究发现,水平电场与风场相互反馈后,风场的变化比电流函数小. 经向风在白天有较明显的差异,夜晚的差异比白天小,主要出现在中高纬地区,并随高度的增加而增大,300km左右达到最大值,其后几乎保持不变. 纬向风有与经向风相似的变化,但纬向风耦合前后的差异比经向风小. 电流函数在耦合后有较大改变,两个涡旋强度都有较强增加,并且北半球的增强大于南半球,而夜晚差异较小. 结果表明,在研究的高度范围内,风场对电场的控制作用大于电场对风场的影响. 相似文献
3.
基于1976---2006年美国Millstone非相干散射雷达的电离层观测数据, 分析了美国Millstone地区不同太阳活动条件下, 包括中性风场和电场漂移共同贡献的垂直等效风场的变化特征. 结果表明, Millstone地区的垂直等效风场表现出比较明显的周日、太阳活动和季节变化特征. 晚间垂直向上的等效风较强, 白天等效风较弱, 甚至接近于零. 在不同太阳活动和季节变化条件下, Millstone地区的等效风场都表现出类似的周日变化特征, 低太阳活动条件下, 晚间表现出较大的向上漂移. 这种周日变化和太阳活动变化特征与Millstone地区受到极区热源驱动大气循环的调制以及离子曳力的增减有关. 春季和秋季有相似的幅度和相位变化趋势, 表现出分点对称性; 冬季晚间向上漂移比夏季弱, 且随着太阳活动增强, 差异更加明显, 这再次体现了极区热源驱动大气循环的影响. 相似文献
4.
电离层电场半年变化的模拟研究 总被引:4,自引:0,他引:4
利用一个中低纬电离层电场理论模式,模拟太阳活动低年、地磁活动平静情况下,中低纬地区电离层电场全年的变化情况。结果显示,单独计算南、北半球(去耦合)得到电离层电场具有明显的周年变化特征,且两个半球电场的相位相差半年左右。而同时计算南、北半球(计及耦合)时,电场则是以半年变化为主,且这种半年变化的幅度和相位随地方时和地磁纬度有变化。提出一个南、北半球耦合电路的简单物理模型给予解释。电路模型初步计算发现,即使两个半球电离层电场分别具有周年变化,只要它们变化的幅度相当,相位相差半年左右,由于跨越南北半球磁力线的耦合效果,耦合的电离层电场会产生明显的半年变化分量。由于缺少连续的电离层电场观测资料,将模拟结果与Richmond基于非相干散射雷达数据建立的经验模式(ISR Model)相比较,结果符合较好。 相似文献
5.
我国电离层基本参量与国际参考模式的比较 总被引:2,自引:1,他引:2
本文利用我国满洲里、北京、武昌、重庆和广州等台站电离层观测记录,对各层临界频率的实测值(月中值)与IRI-86的计算值进行了分析比较.|发现两者存在着显著而系统的偏离.E层和F1层偏离较小F2层偏离较大,其相对值有时超过60%.总的来说,f0F2的相对偏离:夜间大,白天小冬季大,夏季小太阳活动低年大,高年小随着纬度降低偏离增大模式值普遍大于实测值. 相似文献
6.
中纬电离层理论模式研究 总被引:3,自引:0,他引:3
本文利用谱方法建立起一维时变中纬度电离层理论模式.模式比较周密地考虑了中纬度地区电离层的主要动力学过程和光化学过程.模式的突出优点是计算耗时少.我们对日本Wakkanai站进行了模拟计算,模拟结果同实验结果符合得较好. 相似文献
7.
电离层特征参量的自相关原理插值方法 总被引:1,自引:0,他引:1
通过选用合适的电离层平稳性参数, 建立相应的正定自相关系数模型, 利用自相关分析原理, 提出了一种针对电离层特征参量历史缺失数据插值处理的新方法. 该方法能够提高Muhtarov 和Kutiev 在1999 年提出的自相关系数法的插值精度, 通常情况下可以把误差降低1 到2 个百分点以上, 有时甚至能降低接近9 个百分点, 在很大程度上改善了对电离层历史缺失数据的插值处理效果. 此外, 本文还对插值误差随季节、太阳活动性和地理纬度等的变化规律进行了分析. 相似文献
8.
9.
本文在分析了法拉第旋转效应、多源观测效应和程差补偿误差等对可见度函数的相位的影响的基础上,确认了:当电离层不规则性尺度较基线长为大时,仅有电离层引起的可见度函数的相位与基线长成正比且具有随时间快变化的特点这一物理事实;从而提出了从米波综合孔径射电望远镜的观测数据中提取电离层信息的统计方法,并分析了该法的特点,给出了统计实例. 相似文献
10.
11.
N. Balan P.K. Rajesh S. Sripathi S. Tulasiram J.Y. Liu G.J. Bailey 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Using the physics based model SUPIM and FORMOSAT-3/COSMIC electron density data measured at the long deep solar minimum (2008–2010) we investigate the longitude variations of the north–south asymmetry of the ionosphere at low latitudes (±30° magnetic). The data at around diurnal maximum (12:30–13:30 LT) for magnetically quiet (Ap ? 15) equinoctial conditions (March–April and September–October) are presented for three longitude sectors (a) 60°E–120°E, (b) 60°W–120°W and (c) 15°W–75°W. The sectors (a) and (b) have large displacements of the geomagnetic equator from geographic equator but in opposite hemispheres with small magnetic declination angles; and sector (c) has large declination angle with small displacement of the equators; vertical E × B drift velocities also have differences in the three longitude sectors. SUPIM investigates the importance of the displacement of the equators, magnetic declination angle, and E × B drift on the north–south asymmetry. The data and model qualitatively agree; and indicate that depending on longitudes both the displacement of the equators and declination angle are important in producing the north–south asymmetry though the displacement of the equators seems most effective. This seems to be because it is the displacement of the equators more than the declination angle that produces large north–south difference in the effective magnetic meridional neutral wind velocity, which is the main cause of the ionospheric asymmetry. For the strong control of the neutral wind, east–west electric field has only a small effect on the longitude variation of the ionospheric asymmetry. Though the study is for the long deep solar minimum the conclusions seem valid for all levels of solar activity since the displacement of the equators and declination angle are independent of solar activity. 相似文献
12.
B.W. Joshua J.O. Adeniyi B.W. Reinisch I.A. Adimula A.O. Olawepo O.A. Oladipo S.J. Adebiyi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The effects of some geomagnetic storms on the F2 layer peak parameters over Ilorin, Nigeria (Lat. 8:53°N, Long. 4.5°E, dip angle, −2.96°) have been investigated. Our results showed that the highest intensity of the noon bite-out occurred during the March equinox and lowest during the June Solstice on quiet days. Quiet day NmF2 disturbances which appeared as a pre-storm enhancement, but not related to the magnetic storm event that followed were observed at this station. These enhancements were attributed to the modification of the equatorial electric field as a result of injection of the Auroral electric field to the low and equatorial ionosphere. For disturbed conditions, the morphology of the NmF2 on quiet days is altered. Daytime and nighttime NmF2 and hmF2 enhancements were recorded at this station. Decreases in NmF2 were also observed during the recovery periods, most of which appeared during the post-noon period, except the storm event of May 28–29. On the average, enhancements in NmF2 (i.e. Positive phases) are the prominent features of this station. Observations from this study also indicate that Dst, Ap and Kp which have been the most widely used indices in academic research in describing the behavior of geomagnetic storms, are not sufficient for storm time analysis in the equatorial and low latitude ionosphere. 相似文献
13.
E. Friis-Christensen H. Lühr D. Knudsen R. Haagmans 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(1):210-216
The Swarm mission was selected as the 5th mission in ESA’s Earth Explorer Programme in 2004. This mission aims at measuring the Earth’s magnetic field with unprecedented accuracy. This will be done by a constellation of three satellites, where two will fly at lower altitude, measuring the gradient of the magnetic field, and one satellite will fly at higher altitude. The measured magnetic field is the sum of many contributions including both magnetic fields and currents in the Earth’s interior and electrical currents in Geospace. In order to separate all these sources electric field and plasma measurements will also be made to complement the primary magnetic field measurements. Together these will allow the deduction of information on a series of solid earth processes responsible for the creation of the fields measured. The completeness of the measurements on each satellite and the constellation aspect, however, implies simultaneous observations of a unique set of important electrodynamical parameters crucial for the understanding of the physical processes in Geospace, which are an important part of the objectives of the International Living With a Star Programme, ILWS. In this paper an overview of the Swarm science objectives, the mission concept, the scientific instrumentation, and the expected contribution to the ILWS programme will be summarized. 相似文献
14.
Gustavo A. Mansilla Marta M. Zossi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
This paper reports the response of the ionosphere–thermosphere system to an intense geomagnetic storm. For that, data taken by instruments on board Dynamic Explorer 2 at heights of the F2-layer (molecular nitrogen N2 and atomic oxygen O compositions, neutral temperature Tg and electron density Ne) were used. The ionospheric response is characterized by a negative storm effect expanding from mid–high to low latitude. It is observed during this severe geomagnetic storm that negative effects were caused mainly by an increase in molecular nitrogen composition N2 and almost no changes in atomic oxygen composition O. 相似文献
15.
Chao-Song Huang J.C. Foster K. Yumoto J.L. Chau O. Veliz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2407-2412
It is well known that the solar wind can significantly affect high-latitude ionospheric dynamics. However, the effects of the solar wind on the middle- and low-latitude ionosphere are much less studied. In this paper, we report observations that large perturbations in the middle- and low-latitude ionosphere are well correlated with solar wind variations. In one event, a significant (20–30%) decrease of the midlatitude ionospheric electron density over a large latitudinal range was related to a sudden drop in the solar wind pressure and a northward turning of the interplanetary magnetic field, and the density decrease became larger at lower latitudes. In another event, periodic perturbations in the dayside equatorial ionospheric E × B drift and electrojet were closely associated with variations in the interplanetary electric field. Since the solar wind is always changing with time, it can be a very important and common source of ionospheric perturbations at middle- and low-latitudes. The relationship between solar wind variations and significant ionospheric perturbations has important applications in space weather. 相似文献
16.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014,53(2):219-225
The Ionospheric F2-layer peak parameters response to a magnetic storm had been investigated over Ilorin, Nigeria (Lat. 8:53°N, Long. 4.5°E, dip angle, −2.96°), Jicamarca, Peru (11.95°S, 76.87°W, dip angle, 0.8°) and Hermanus, South Africa (34.42°S, 19.22°E, dip angle, −60.77°), using percentage enhancement/depletion values. Our results showed an enhancement in NmF2 at all of these stations. Averagely, pre-noon and post-noon peaks are highest at Ilorin during quiet time. The similar pattern observed for quiet condition between Ilorin and Jicamarca was due to their latitudinal positions. For disturbed NmF2 condition, Jicamarca and Ilorin recorded higher peaks at nighttime than during the daytime for the storms main phase, and the reverse over Hermanus. The nighttime and daytime increases were observed respectively at Ilorin and Hermanus during the recovery period. The hmF2 variation recorded higher enhancement at Jicamarca during the daytime and at Hermanus at nighttime during the main phase. During the recovery phase, the highest enhancement was recorded during the daytime at Jicamarca, and over Hermanus at nighttime. These observations find their explanation in the magnetospheric current, solar wind and E × B drift. 相似文献
17.
雷暴云准静电场和夜间低电离层的电离 总被引:2,自引:0,他引:2
用点电荷模型计算雷暴云突然放电后形成的准静电场随高度的分布,以E/N(E为电场大小,N为大气密度)为输入参量,在一定条件下,对Boltzmann方程数值求解,计算电离层电子数密度的扰动.计算结果表明,在约70-90km之间,在约放电后的10ms内,准静电场大于中性大气的击穿电场,将引起大气的雪崩电离,从而引起夜间低电离层电子密度的显著增加,但这种电子密度的增加是短暂的,在很短的时间内就恢复到平静时的水平,恢复时间随高度的变化而不同. 相似文献
18.
V.M. Sorokin O.A. Pokhotelov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The influence of quasi-static electric field of seismic origin on the characteristics of the internal gravity waves (IGWs) in the Earth’s ionosphere is considered. The electric field in the ionosphere arises due to the injection of charged aerosols into the atmosphere, formation of an EMF in the near Earth atmosphere and perturbation of the conductive electric current in the global electric circuit. Amplification of the electric current in seismic zone is accompanied by the formation of perturbation of the lower ionosphere that affects the amplitude and phase of VLF/LF signals. The action of the electric field on the IGWs is connected with the appearance of the Ampere’s force in the ionosphere. In the spectral range of these waves the latter acts on the neutral component of the ionosphere plasma. As the result of this interaction the ionosphere starts to support the discrete spectrum of oscillations. Periods of their maximums increase as numbers of natural sequence. The existence of such peculiarities of the waves in the ionosphere is confirmed by observations. 相似文献
19.
R.N. Boroyev M.S. Vasiliev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(1):348-354
In this work, the relation of high-latitude indices of geomagnetic activity (AE, Kp) with the rate of storm development and a solar wind electric field during the main phase of magnetic storm induced by the CIR and ICME events is investigated. 72 magnetic storms induced by CIR and ICME events have been selected. It is shown that for the CIR and ICME events the increase of average value of the Kp index (Kpaver) is observed with the growth of rate of storm development. The value of Kpaver index correlates with the magnitude of minimum value of Dst index (|Dstmin|) only for the ICME events. The analysis of average values of AE and Kp indices during the main phase of magnetic storm depending on the SW electric field has shown that for the CIR events, unlike the ICME events, the value of AEaver increases with the growth of average value of the electric field (Eswaver). The value of Kpaver correlates with the Eswaver only for the ICME events. The relation between geomagnetic indices and the maximum value of SW electric field (Eswmax) is weak. However, for the ICME events Kpaver correlates with Eswmax. 相似文献