首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of new coordination complexes of cobalt(II), nickel(II) and copper(II) with two new aroylhydrazones, 2-hydroxy-1-naphthaldehyde isonicotinoylhydrazone (H(2)L(1)) and 2-hydroxy-1-naphthaldehyde-2-thenoyl-hydrazone (H(2)L(2)) have been synthesized and characterized by elemental analysis, conductance measurements, magnetic susceptibility measurements, (1)H NMR spectroscopy, IR spectroscopy, electronic spectroscopy, EPR spectroscopy and thermal analysis. IR spectra suggests ligands acts as a tridentate dibasic donor coordinating through the deprotonated naphtholic oxygen atom, azomethine nitrogen atom and enolic oxygen atom. EPR and ligand field spectra suggests octahedral geometry for Co(II) and Ni(II) complexes and a square planar geometry for Cu(II) complexes.  相似文献   

2.
A new series of metal complexes containing Co(II), Pd(II), Fe(III) chloride and Cu(II) salts (chloride, bromide, sulphate and perchlorate) have been prepared with Schiff base ligand ( HL ). The synthesized compounds were elucidated using elemental analyses, spectral techniques, molar conductance, magnetic measurements and thermogravimetric studies. The analytical data established (1 M:1 L) stoichiometry for complexes ( 1 ), ( 2 ), ( 4 ), ( 6 ) and ( 7 ) as well as (1 M:2 L) and (2 M:3 L) stoichiometry for complexes ( 5 ) and ( 3 ), respectively. As a result, the ligand HL coordinates in complexes ( 1 ), ( 2 ), ( 4 ), ( 6 ) as a monobasic tridentate ONN moiety via the oxygen atom of the deprotonated phenolic OH, the nitrogen atoms of the azomethine and the imine group in pyrazolopyridine ring. While, it behaves as a neutral bidentate in complexes ( 3 , 7 ), chelates via oxygen and nitrogen atoms of enolic OH and azomethine groups. Also, in complex ( 5 ) Cu2+ ion binds via NO sits of two ligand molecules in its monobasic and neutral forms. The magnetic moment and electronic spectral data proposed octahedral structure for complexes ( 2 , 3 and 7 ) as well as triagonal bipyramidal and square pyramidal geometry for complexes ( 1 and 4 ), while, chelates ( 5 ) and ( 6 ) possess square planar geometry. TG/DTG studies confirmed the chemical formula for these complexes and established the thermal decomposition processes ended with the formation of metal or metal oxides contaminated with carbon residue. An axial electron spin resonance spectra were suggested for Cu(II) complexes pointing to 2B1g as a ground state with hyperfine structure for complex ( 4 ). In vitro antibacterial and antioxidant activities were performed for HL ligand and its metal complexes. The biological studies indicate that complex ( 3 ) has better antibacterial activity compared to the ligand and the other complexes.  相似文献   

3.
The coordination chemistry of N′-((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)methylene)-2-hydroxybenzohydrazide with copper(II), nickel(II), cobalt(II), manganese(II), zinc(II), palladium(II), iron(III), ruthenium(III), uranyl(VI), and titanium(IV) has been studied. The ligand and its complexes was characterized by elemental and thermal analyses, magnetic moments and conductivity measurements as well as spectroscopic techniques such as infrared, mass spectra, nuclear magnetic resonance, electron spin resonance and electronic absorption spectra. The spectral data showed that the ligand is monobasic tridentate coordinated via the enolic carbonyl oxygen of the hydrazide moiety, azomethine nitrogen and pyrazolone oxygen atoms.  相似文献   

4.
《Arabian Journal of Chemistry》2020,13(10):7378-7389
(E)-1-((((1H-benzo[d]imidazol-2-yl)methyl)imino)methyl)naphthalen-2-ol, ligand was synthesized by condensation of (1H-benzo[d]imidazol-2-yl) methanamine, with 2-hydroxynaphthaldehyde. The ligand and the metal complexes were characterized by various spectroscopic techniques. Interpretation of spectra confirmed that the ligand adopted either a neutral tridentate or a monobasic tridentate mode, bonded to the metal ions through the nitrogen atom of the heterocyclic benzimidazole, azomethine nitrogen atom and deprotonated phenolic oxygen atom forming either a square planer geometry. X-ray powder diffraction analysis of complexes indicated that the complexes were crystalline in nature with triclinic structures. The antibacterial and the antifungal activities of the ligand and its complexes were examined against Escherichia coli, Bacillus subtilis and Aspergillus niger by well- diffusion method. The results showed that Cd (II) complex exhibits the highest antifungal and antibacterial activities among the tested complexes. The in vitro antitumor activityies of the different complexes were tested and the results revealed an important cytotoxicity of cadmium complex against MCF-7, Hep G2 and HCT 116 cell. Iron complex showed also a strong toxicity towards Hep G2 and HCT cell whereas moderate activity against MCF-7. The bioassay study of different complexes against mosquito larvae demonstrated strong activity of zirconium complex with 0.172 values of LC50.  相似文献   

5.
A series of chromone Schiff base complexes were prepared and analytically as well as spectroscopically characterized. The ligand was found to act as a monobasic tridentate ligand bonded covalently or coordinatively to the metal ion via deprotonated hydroxyl group, azomethine nitrogen atom and carbonyl oxygen atom of antipyrine moiety. Both electronic spectra and magnetic measurements indicated an octahedral or a distorted octahedral geometry around the metal ions for all metal complexes except the nickel complex, which had a tetrahedral geometry. In addition, the ability of the newly prepared compounds to activate the tumour suppressor p53 in cancer cells was studied, with zinc and copper complexes showing promising activities for p53 ubiquitination compared with diphenylimidazole (reference drug).  相似文献   

6.
A new Schiff base ligand was prepared by condensation of 2-hydroxy-4-methoxybenzaldehyde with 1,2-propanediamine. The ligand and its metal complexes were characterized by elemental analysis, FT-IR, 1H and 13C NMR, magnetic moment, molar conductance, UV-Vis, SEM and thermal analysis (TGA). The molar conductance measurements indicated that all the metal complexes were non-electrolytes. IR spectra showed that ligand (L) behaves as a neutral tetradentate ligand and binds to the metal ions by the two azomethine nitrogen atoms and two phenolic oxygen atoms. The electronic absorption spectra and magnetic susceptibility measurements indicated square planar geometry for the Ni(II) and Cu(II) complexes while other metal complexes showed tetrahedral geometry. Also the surface morphology of the complexes was studied by SEM.  相似文献   

7.
Mixed ligand complexes of Cu(II), Ni(II), Co(II) and Zn(II) formed with glycine and uracil or 2-thiouracil have been synthesized and characterized by elemental analysis, conductance, spectral (IR and electronic spectra) and magnetochemical measurements. Results show that glycine is bidentate in all cases; uracil behaves as a bidentate ligand in Cu(II) complex, coordinating through its one carbonyl oxygen and nitrogen, whereas in other cases it is only monodentate, coordinating only through nitrogen. With thiouracil, coordination occurs from carbonyl oxygen and one nitrogen in Cu(II) and Ni(II) complexes, but in the Co(II) complex coordination occurs from thionyl sulphur and nitrogen. In the Zn(II) complex it shows tridentate behaviour, coordinating through oxygen, sulphur and one nitrogen. Mixed Cu(II), Co(II) and Zn(II) complexes of uracil and of Ni(II) and Zn(II) with thiouracil are octahedral, whereas the mixed Ni(II) complex with uracil shows distorted tetrahedral geometry, and the mixed Co(II)-thiouracil complex is square planar. The mixed Cu(II)-thiouracil complex has a binuclear structure, with square planar arrangement around each copper atom.  相似文献   

8.
A new series of transition metal complexes of Schiff base isonicotinic acid (2-hydroxybenzylidene)hydrazide, HL, have been synthesized. The Schiff base reacted with Cu(II), Ni(II), Co(II), Mn(II), Fe(III) and UO2(II) ions as monobasic tridentate ligand to yield mononuclear complexes of 1:2 (metal:ligand) except that of Cu(II) which form complex of 1:1 (metal:ligand). The ligand and its metal complexes were characterized by elemental analyses, IR, UV-vis, mass and 1H NMR spectra, as well as magnetic moment, conductance measurements, and thermal analyses. All complexes have octahedral configurations except Cu(II) complex which has an extra square planar geometry distorted towards tetrahedral. While, the UO2(II) complex has its favour hepta-coordination. The ligand and its metal complexes were tested against one strain Gram +ve bacteria (Staphylococcus aureus), Gram -ve bacteria (Escherichia coli), and Fungi (Candida albicans). The tested compounds exhibited higher antibacterial activities.  相似文献   

9.
The Schiff base hydrazone ligand HL was prepared by the condensation reaction of 7-chloro-4-quinoline with o-hydroxyacetophenone. The ligand behaves either as monobasic bidentate or dibasic tridentate and contain ONN coordination sites. This was accounted for be the presence in the ligand of a phenolic azomethine and imine groups. It reacts with Cu(II), Ni(II), Co(II), Mn(II), UO(2) (VI) and Fe(II) to form either mono- or binuclear complexes. The ligand and its metal complexes were characterized by elemental analyses, IR, NMR, Mass, and UV-Visible spectra. The magnetic moments and electrical conductance of the complexes were also determined. The Co(II), Ni(II) and UO(2) (VI) complexes are mononuclear and coordinated to NO sites of two ligand molecules. The Cu(II) complex has a square-planar geometry distorted towards tetrahedral, the Ni(II) complex is octahedral while the UO(2) (VI) complex has its favoured heptacoordination. The Co(II), Mn(II) complexes and also other Ni(II) and Fe(III) complexes, which were obtained in the presence of Li(OH) as deprotonating agent, are binuclear and coordinated via the NNNO sites of two ligand molecules. All the binuclear complexes have octahedral geometries and their magnetic moments are quite low compared to the calculated value for two metal ions complexes and thus antiferromagnetic interactions between the two adjacent metal ions. The ligand HL and metal complexes were tested against a strain of Gram +ve bacteria (Staphylococcus aureus), Gram -ve bacteria (Escherichia coli), and fungi (Candida albicans). The tested compounds exhibited high antibacterial activities.  相似文献   

10.
Co(II), Ni(II), Cu(II) and Zn(II) complexes of the Schiff base derived from vanillin and dl-alpha-aminobutyric acid were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements, powder XRD and biological activity. The analytical data show the composition of the metal complex to be [ML(H(2)O)], where L is the Schiff base ligand. The conductance data indicate that all the complexes are non-electrolytes. IR results demonstrate the tridentate binding of the Schiff base ligand involving azomethine nitrogen, phenolic oxygen and carboxylato oxygen atoms. The IR data also indicate the coordination of a water molecule with the metal ion in the complex. The electronic spectral measurements show that Co(II) and Ni(II) complexes have tetrahedral geometry, while Cu(II) complex has square planar geometry. The powder XRD studies indicate that Co(II) and Cu(II) complexes are amorphous, whereas Ni(II) and Zn(II) complexes are crystalline in nature. Magnetic measurements show that Co(II), Ni(II) and Cu(II) complexes have paramagnetic behaviour. Antibacterial results indicated that the metal complexes are more active than the ligand.  相似文献   

11.
Schiff-base complexes [ML(H2O)2(Ac)]nH2O (M?=?Co(II), Ni(II) and Zn(II); L?=?Schiff-base ligand derived from 2-acetylpyridine and alanine and n?=?1–3/2) were synthesized and characterized by elemental analysis, spectral (FTIR, UV/Vis, MS, 1H-NMR), thermal (TGA), conductance and magnetic moment measurements. The results suggest octahedral geometry for all the isolated complexes. IR spectra show that the ligand coordinates to the metal ions as mononegative tridentate through pyridyl nitrogen, azomethine nitrogen and carboxylate oxygen after deprotonation of the hydroxyl group. Semi-empirical calculations PM3 and AM1 have been used to study the molecular geometry and the harmonic vibrational spectra to assist the experimental assignments of the complexes.  相似文献   

12.
A new azohydrazone, 2-hydroxy-N′-2-hydroxy-5-(phenyldiazenyl)benzohydrazide (H3L) and its copper(II), nickel(II), cobalt(II), manganese(II), zinc(II), cadmium(II), mercury(II), vanadyl(II), uranyl(II), iron(III), and ruthenium(III) complexes have been prepared and characterized by elemental and thermal analyses as well as spectroscopic techniques (1H-NMR, IR, UV-Vis, ESR), magnetic, and conductivity measurements. Spectral data showed a neutral bidentate, monobasic bidentate, monobasic tridentate, and dibasic tridentate bonding to metal ions via the carbonyl oxygen in ketonic or enolic form, azomethine nitrogen, and/or deprotonated phenolic hydroxyl oxygen. ESR spectra of solid vanadyl(II) complex (2), copper(II) complexes (3–5), and (7) and manganese(II) complex (10) at room temperature show isotropic spectra, while copper(II) complex (6) shows axial symmetry with covalent character. Biological results show that the ligand is biologically inactive but the complexes exhibit mild effect on Gram positive bacteria (Bacillus subtilis), some octahedral complexes exhibit moderate effect on Gram negative bacteria (Escherichia coli), and VO(II), Cd(II), UO(II), and Hg(II) complexes show higher effect on Fungus (Aspergillus niger). When compared to previous results, metal complexes of this hydrazone have a mild effect on microorganisms due to the presence of the azo group.  相似文献   

13.
Summary Synthesis of a new Schiff base derived from salicylaldehyde and 5-methylpyrazole-3-carbohydrazide, and its coordination compounds with nickel(II), cobalt(II), copper(II), manganese(II), zinc(II), zirconium(IV), dioxouranium(VI) and dioxomolybdenum(VI) are described. The ligand and the complexes have been characterized on the basis of analytical, conductance, molecular weight, i.r., electronic and n.m.r. spectra and magnetic susceptibility measurements. The stoichiometries of the complexes are represented as NiL · 3H2O, CoL · 2H2O, CuL, MnL · 2H2O, ZnL · H2O, Zr(OH)2(LH)2, Zr(OH)2L · 2MeOH, UO2L · MeOH and MoO2L · MeOH (where LH2 = Schiff base). The copper(II) complex shows a subnormal magnetic moment due to antiferromagnetic exchange interaction while the nickel(II), cobalt(II) and manganese (II) complexes show normal magnetic moments at room temperature. The i.r. and n.m.r. spectral studies show that the Schiff base behaves as a dibasic and tridentate ligand coordinating through the deprotonated phenolic.oxygen, enolic oxygen and azomethine nitrogen.  相似文献   

14.
Two new pyrimidine based NNS tridentate Schiff base ligands S-methyl-3-((2-S-methyl-6-methyl-4-pyrimidyl)methyl)dithiocarbazate [HL1] and S-benzyl-3-((2-S-methyl-6-methyl-4-pyrimidyl)methyl)dithiocarbazate [HL2] have been synthesised by the 1:1 condensation of 2-S-methylmercapto-6-methylpyrimidine-4-carbaldehyde and S-methyl/S-benzyl dithiocarbazate. A Ni(II) complex of HL1 and Co(III) and Fe(III) complexes of HL2 have been prepared and characterized by elemental analyses, molar conductivities, magnetic susceptibilities and spectroscopic studies. All the bis-chelate complexes have a distorted octahedral arrangement with an N4S2 chromophore around the central metal ion. Each ligand molecule binds the metal ion using the pyrimidyl and azomethine nitrogen and thiolato sulfur atoms (except in the nickel complex, one ligand molecule uses the thione sulfur in lieu of thiolato sulfur atom). In the Ni(II) complex, one of the ligand molecules behaves as a neutral tridentate and the other molecule functions as a uninegative tridentate, whereas in the Co(III) and Fe(III) complexes, the ligand molecules behave as monoanionic tridentate. All the complexes were analyzed by single crystal X-ray diffraction and significant differences concerning the distortion from an octahedral geometry of the coordination environment were observed.  相似文献   

15.
The synthesis of Ce(IV) complexes [Ce(sac)(2)(SO(4))(H(2)O)(4)] (1) and [Ce(sac)(2) (SO(4))(PyOH)(2)] (2) (sac=saccharinate, PyOH=2-hydroxypyridine) starting with sodium saccharinate is described. Their vibrational and nuclear magnetic resonance ((1)H, (13)C) spectra as well as their thermal mode of degradation were investigated. The data indicate that sac in complex 1 behaves as a monodentate ligand through the nitrogen atoms. Saccharinato ligand in complex 2 shows different mode of coordination, where it behaves as tridentate and binds Ce(IV) through its carbonylic oxygen, nitrogen and sulphonylic oxygen atoms. The most probable structure in complex 2 is that, units of [Ce(sac)(2)(SO(4))(PyOH)(2)] are linked by bridges of the O- of sac sulphonyl leading to polymeric chains.  相似文献   

16.
The oxovanadium(IV) complexes of the Schiff base hydrazones, synthesized from 3‐hydrazinoquinoxaline‐2‐one (HQO) with salicylaldehyde (HSHQO), o‐hydroxyacetophenone (HHAHQO), dehydroacetic acid (HDHAHQO) and o‐nitrobenzaldehyde (NBHQO) were synthesized and characterized on the basis of analytical, conductance, magnetic moment, infrared, NMR, ESR and electronic spectral data. The ligands HSHQO, HDHAHQO behaved as monobasic tridentate ONN donors through phenolic oxygen, azomethine nitrogens. The ligand HAHQO acted as a monobasic bidentate ON donor through the phenolic oxygen, azomethine (free) nitrogen and the ligand NBHQO acted as neutral bidentate ON donor through oxygen of the nitro group and azomethine (free) nitrogen.  相似文献   

17.
A series of new ternary zinc(II) complexes [Zn(L(1-10))(phen)], where phen is 1,10-phenanthroline and H(2)L(1-10)=tridentate Schiff base ligands derived from the condensation of amino acids (glycine, l-phenylalanine, l-valine, l-alanine, and l-leucine) and salicylaldehyde-5-sulfonates (sodium salicylaldehyde-5-sulfonate and sodium 3-methoxy-salicylaldehyde-5-sulfonate), have been synthesized. The complexes were characterized by elemental analysis, IR, UV-vis, (1)H NMR, and (13)C NMR spectra. The IR spectra of the complexes showed large differences between nu(as)(COO) and nu(s)(COO), Deltanu (nu(as)(COO)-nu(s)(COO)) of 191-225 cm(-1), indicating a monodentate coordination of the carboxylate group. Spectral data showed that in these ternary complexes the zinc atom is coordinated with the Schiff base ligand acts as a tridentate ONO moiety, coordinating to the metal through its phenolic oxygen, imine nitrogen, and carboxyl oxygen, and also with the neutral planar chelating ligand, 1,10-phenanthroline, coordinating through nitrogens.  相似文献   

18.

A tridentate ONN donor Schiff-base hydrazone ligand, H2L, was synthesized by the condensation of 2-amino-4-hydrazino-6-methyl pyrimidine with o-hydroxyacetophenone. The structure of the ligand was elucidated by IR and 1H NMR spectra which indicated the presence of three different coordinating groups, the oxygen atom of the phenolic OH group, the nitrogen atom of the azomethine, C=N, group and one of the nitrogen atoms of the heterocyclic ring. The ligand behaves either as a tridentate (N2O sites) neutral, mono- or di-basic ligand or as a bidentate (NO sites) monobasic ligand depending on the pH of the reaction medium and the metal ion. The mass spectrum of the ligand showed the presence of the molecular ion peak. Different types of metal complexes, mononuclear such as [(HL)M(OAc)]·xH2O (M = Cu or Zn), [(HL)M(OAc)H2O]·xH2O (M = Ni or UO2), [(HL)Co(OH2)Cl]·2H2O, [(H2L)FeCl3]·3½H2O, [(L)FeCl(H2O)2]· 2¼H2O, [(HL)L'FeCl(H2O)]·H2O (L' = 8-hydroxyquinoline, 8-HQ), [(HL)L'FeCl]Cl·xH2O (L' = 1,10-phenanthroline, phen, or 2,2'-bipyridyl, bpy) and [(HL)L'Cu]·ClO4 (L' = phen). Also, binuclear complexes with oxalic acid of the type [(HL)ClFe(ox)FeCl(HL)], [(HL)Cu(ox)Cu(HL)] were obtained. The IR spectra of the binuclear complexes indicated that the oxalate anion acts as a bridging tetradentate ligand. Elemental analyses, IR, electronic and ESR spectra as well as conductivity and magnetic susceptibility measurements were used to elucidate the structures of the newly prepared metal complexes. Square-planar geometry is suggested for the Cu(II) complex, octahedral geometry for the Fe(III), Ni(II) complexes, tetrahedral geometry for the Co(II) and Zn(II) complexes and pentagonal-bipyramidal geometry for the UO2(VI) complex.  相似文献   

19.
The synthetic methods of novel Cu(II) and adduct complexes, with selective azodyes containing nitrogen and oxygen donor ligands have been developed, characterized and presented. The prepared complexes fall into the stoichiometric formulae of [Cu(L(n))(2)](A) and [Cu(L(n))(2)(Py)(2)](B), where two types of complexes were expected and described. In type [(A) (1:2)] the chelate rings are six-membered/four coordinate, whereas in type [(B) (1:2:2)] they are six-membered/six coordinate. The important bands in the IR spectra and main (1)H NMR signals are tentatively assigned and discussed in relation to the predicted assembly of the molecular structure. The IR data of the azodye ligands suggested the existing of a bidentate binding involving azodye nitrogen and C-O oxygen atom of enolic group. They also showed the presence of Py coordinating with the metal ion. The coordination geometries and electronic structures are determined from the framework of the proposed modeling of the formed novel complexes. The complexes (1-5) exist in trans-isomeric [N,O] solid form, while adduct complexes (6-10) exist in trans isomeric (Py) form. The square planar/octahedral coordination geometry of Cu(II)/adduct is made up of an N-atom of azodye, the deprotonated enolic O-atom and two Py. The azo group was involved in chelation for all the prepared complexes. ESR spectra show the simultaneous presence of a planar trans and a nearly planar cis isomers in the 1:2 ratio for all N,O complexes [Cu(L(n))(2)]. The ligands in the dimmer are stacked over one another. In the solid state of azo-rhodanine, the dimmers have inter- and intramolecular hydrogen bonds. Interactions between the ligands and Cu(II) are also discussed.  相似文献   

20.
The complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), dioxouranium(VI), and Th (IV) with a new Schiff base, 3-[(Z)-5-amino-1,3,3-trimethyl cyclohexylmethylimino]-1,3-dihydroindol-2-one formed by the condensation of isatin (Indole-2.3-dione) with isophoronediamine(5-amino-1,3,3-trimethyl-cyclohexane methylamine) (IPDA) was synthesized and characterized by microanalysis, conductivity, UV-visi-ble, FT-IR, 1 H NMR,TGA, and magnetic susceptibility measurements. All the complexes exhibit 1: 1 metal to ligand ratio except for the dioxouranium(VI) and thorium(IV) complexes, where the metal: ligand stoichiometry is 1: 2. The spectral data revealed that the ligand acts as monobasic bidentate, coordinating to the metal ion through the azomethine nitrogen and carbonyl oxygen of the isatin moiety. Tetrahedral geometry for Co(II), Ni(II), Zn(II), Cd(II), and Hg(II) complexes, square planar geometry for Cu(II) complexes, and the coordination numbers 6 and 8 for UO2(VI) and Th(IV) complexes, respectively, are proposed. Both the ligand and the metal complexes were screened for their antibacterial activity against Bacillus subtilis, Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa, and the complexes are more potent bactericides than the ligand. The anthelmentic activity of the ligand and its complexes against earthworms was also investigated. This article was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号